
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

AN ARCHITECTURAL FRAMEWORK FOR
INTEGRATING COTS/GOTS/LEGACY SYSTEMS

by

Karen M. Gee

June 2000

Thesis Advisor:
Second Reader:

Luqi
Mantak Shing

Approved for public release; distribution is unlimited.

»r» n-yjfe'q' 20000825 028

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
An Architectural Framework for Integrating COTS/GOTS/Legacy Systems
6. AUTHOR(S)
Gee, Karen M.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Office and Institute of Joint Warfare Analysis
10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT

Building distributed systems more effectively and efficiently is an essential goal of Department of Defense

(DoD). We are driven by the push toward greater use of COTS, the need to improve access to legacy data and services,

and the new business opportunities offered by web-based technologies and electronic commerce. To fully realize the

DOD's goal, a new architectural framework is needed.

This thesis proposes an architectural framework suitable for integrating COTS/GOTS/legacy systems in a

distributed, heterogeneous environment. The proposed architectural framework uses The Open Group Architectural

Framework (TOGAF) as a basis and includes new tools to support the COTS/GOTS/legacy system development and

integration. A case study for the Naval Integrated Tactical Environmental Systems (NITES) program where a prototype

is built, demonstrates the effective use of the proposed architectural framework.

14. SUBJECT TERMS
COTS, GOTS, Legacy Systems, Architectural Framework, Distributed Systems, Software Development

15. NUMBER OF
PAGES 230

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

AN ARCHITECTURAL FRAMEWORK FOR INTEGRATING
COTS/GOTS/LEGACY SYSTEMS

Karen M. Gee
B.S.E.E., University of California, Davis, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2000

Author:

Approved by:
Luqi, Thesis Advisor

Mantak Shing, Seco/id Reader

~r-n
Luqi, Chairman

Software Engineering Curriculum

V^ Finn Rr>fi Dan Boger,
Department of Comp

an
Science

ui

IV

ABSTRACT

Building distributed systems more effectively and

efficiently is an essential goal of the Department of

Defense (DoD). We are driven by the push toward greater use

of COTS, the need to improve access to legacy data and

services, and the new business opportunities offered by web-

based technologies and electronic commerce. To fully

realize the DoD's goal, a new architectural framework is

needed.

This thesis proposes an architectural framework

suitable for integrating COTS/GOTS/legacy systems in a

distributed, heterogeneous environment. The proposed

architectural framework uses The Open Group Architectural

Framework (TOGAF) as a basis and includes new tools to

support the COTS/GOTS/legacy system development and

integration. A case study for the Naval Integrated Tactical

Environmental Systems (NITES) program where a prototype is

built, demonstrates the effective use of the proposed

architectural framework.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PURPOSE 1
B. MOTIVATION 3
C. ORGANIZATION 4

/. Essentials of A Structured Software Development Process 4
2. Architectural Framework 4
3. Proposed Architectural Framework 5
4. NITES Case Study 5
5. Recommendations and Conclusions 5

II. ESSENTIALS OF A STRUCTURED SOFTWARE DEVELOPMENT PROCESS 7

A. TRADITIONAL SOFTWARE DEVELOPMENT 7
/. Requirements 9
2. Design 14
3. Implementation]J
4. Test is

B. SOFTWARE DEVELOPMENT USING COTS COMPONENTS 22
1. Requirements with COTS. 26
2. Design with COTS 27
3. Implementation with COTS 29
4. Testing with COTS. 31

HI. ARCHITECTURAL FRAMEWORK 35

A. INTRODUCTION 35
1. Architecture vs. Architectural Framework 57
2. Importance Of An Architecture &An Architectural Framework 39

B. TOGAF 41
1. Architectural Development Model. 42
2. Foundation Architecture 43
3. Resources ...45

IV. PROPOSED ARCHITECTURAL FRAMEWORK 51

A. TOGAF UPDATES 52
B. TOOLS FOR THE PROPOSED ARCHITECTURAL FRAMEWORK 60

/. Object Request Brokers 61
2. Wrappers 82
3. Glue Code 85
4. XML 86

V. NITES CASE STUDY 89

A. NITES 89
1. NITES Background. 89
2. Existing NITES Architecture. 90
3. Data vs. Product 92

B. CASE STUDY92

Vll

/. Definition of Existing Environment in Existing Terms 93
2. Lessons Learned From The Existing System 95
3. Market Survey 96
4. COTS/GOTS Evaluation and Selection 97
5. Restatement of Existing Environment in TOGAF Terms 105
6. Views, Constraints and External Environments 108
7. Target Architecture. Ill
8. Constraints of Case Study.114

VI. CONCLUSION AND RECOMMENDATIONS 115

A. CONCLUSION 115
B. RECOMMENDATIONS 116

APPENDIX A. SAMPLE COTS/GOTS SELECTION/EVALUATION FORM 117

APPENDIX B. SOFTWARE REQUIREMENTS SPECIFICATION (SRS) FOR AN
ARCHITECTURAL FRAMEWORK OF COTS/GOTS/LEGACY SYSTEM 123

APPENDIX C. SOFTWARE DESIGN SPECIFICATION (SDS) FOR AN ARCHITECTURAL
FRAMEWORK OF DOD COTS/GOTS/LEGACY SYSTEM 131

APPENDIX D. SOURCE CODE 169

LIST OF REFERENCES 209

INITIAL DISTRIBUTION LIST 213

Vlll

LIST OF FIGURES

Figure 1 - Technical Reference Model From Ref. [16] 45
Figure 2 - NITES Architecture 91
Figure 3 - Functional View of Existing NITES Environment. 93
Figure 4 - Existing Hardware Topology 95
Figure 5 - NITES Distributed Computing Architecture 106
Figure 6 - NITES Security View 109
Figure 7 - NITES Functional Architecture 112

IX

X

LIST OF TABLES

Table 1 - Software Methods [Ref. 5] 9
Table 2 - Proposed Architecture Development Cycle 59
Table 3 - COTS/GOTS Phase 2 Evaluation Results 99
Table 4 - COTS/GOTS Phase 3 Evaluation Results 105
Table 5 - Mapping of Services to Existing Architecture.. 106

XI

I. INTRODUCTION

A. PURPOSE

The trend towards using Commercial Off-The-Shelf (COTS)

components within the Department of Defense (DoD) is the

preferred way to build systems [Ref. 1] . Prior to COTS

integration into system architectures, all DoD software-

intensive systems were built around organically developed

source code. With constantly dwindling budgets and tighter

schedules, the focus has shifted to building software-

intensive systems by integrating COTS software components.

In 1996, DoD created a paradigm shift in software

development when it strongly encouraged the use of

commercial-of-the-shelf (COTS) components for development of

new Automated Information Systems (AIS) if an existing

system cannot be modified [Ref. 2].

Initially, the DoD community embraced this mandate

believing COTS integration

• is economical, both in initial development and lower
life cycle costs;

• is faster to deploy;

• is already developed with proven capability;

• reduces the technical risks;

is fully supported with documentation and technical
support;

represents state of the art technology.

However, as more experience is gained using COTS for

building DoD systems, many have found there are many

problems to be addressed with COTS: Tracz [Ref. 3] sites

plug and play software does not always work. Software

developers had to write code to enable the COTS software

packages to intercommunicate.

Building distributed systems more effectively and

efficiently is an essential goal of the DoD. We are driven

by the push toward greater use of COTS, and the need to

improve access to legacy data and services.

This thesis proposes an architectural framework that

provides an effective approach to integrate COTS software

components into distributed, heterogeneous systems. This

thesis focuses on military AIS where multiple, mutually

exclusive, standalone COTS products are required to

communicate together in a single integrated system along

with legacy and GOTS components. A case study with the Naval

Integrated Tactical Environmental System (NITES) program

demonstrates the effectiveness of the proposed architectural

framework.

The primary purpose of this thesis is to build an

architectural framework suitable for integrating

COTS/GOTS/legacy systems in a distributed, heterogeneous

environment. Additionally, the secondary purpose is to

discuss and analyze the traditional software development

process and how COTS affects it.

B. MOTIVATION

Building systems with COTS/GOTS/legacy components is

not as easy as just loading these components onto a platform

and assuming all the components will communicate with each

other. The conglomerate of software applications on a

machine does not comprise a system. A truly integrated

system is greater than the sum of its parts; it provides new

services and increased value.

Not only must components within a system communicate

with each other but when distributed, heterogeneous

environments abound, systems must interoperate with each

other. Interoperability is the ability of systems to

provide services to and accept services from other

components within a system, and to use the services so

exchanged to enable them to operate effectively together as

a cohesive unit.

Architectural frameworks on the market today do not

sufficiently address the building of distributed,

heteorogeneous systems with COTS/GOTS/Legacy components. To

effectively build distributed, heteorogeneous systems with

these components, an architectural framework, which

addresses the interoperability issues and provides the tools

necessary to build an integrated, interoperable target

architecture, is needed.

C. ORGANIZATION

1. Essentials of A Structured Software Development
Process

This chapter discusses the essentials of a structured

software development process for both a traditional software

development and a development using COTS components. It

describes how the traditional software development process

must be modified to accommodate the use of COTS components.

2. Architectural Framework

This chapter defines the difference between

architecture and architectural framework, discusses the

importance of an architectural framework in a software

development process and introduces The Open Group

Architectural Framework (TOGAF).

3. Proposed Architectural Framework

This chapter describes the proposed architectural

framework for integrating COTS/GOTS/legacy systems in a

distributed, heterogeneous environment. It uses TOGAF as a

basis, modifying it to address the integration of

COTS/GOTS/legacy systems. Additional tools are also

proposed for this new architectural framework to address the

interoperability of distributed, heterogeneous systems.

4. NITES Case Study

This chapter presents a case study using the NITES

system to demonstrate the effectiveness of the proposed

architectural framework to build an integrated NITES

architecture and the effectiveness of these tools in

building an interoperable, distributed, heterogeneous

system.

5. Recommendations and Conclusions

This chapter recommends areas of additional research

and concludes with a summary analysis of the proposed

architectural framework.

THIS PAGE LEFT INTENTIONALLY BLANK

II. ESSENTIALS OF A STRUCTURED SOFTWARE DEVELOPMENT PROCESS

A. TRADITIONAL SOFTWARE DEVELOPMENT

Over the past decade, the field of software engineering

has seen many changes to the methods of software development

[Ref. 4] . A software methodology is the set of rules and

practices used to create computer programs. The purpose of

a software method is to bring structure into a software

development process. Software engineering has transitioned

from the waterfall method to the incremental build method

and the spiral method.

The waterfall method requires each phase of the

development process to be completed prior to proceeding to

the next phase. In conjunction with certain phase

completions, a baseline is established that "freezes" the

products of the development at that point. If a need is

identified to change these products, a formal change process

is followed to make the change. The graphic representation

of these phases in software development resembles the

downward flow of a waterfall.

In using the waterfall method, many limitations are

noted. Some of these limitations include a long duration

prior to seeing a fielded system, a full budget to see the

development to completion, all requirements must be known

7

upfront which is not always practical. Anyone of these

limitations can cause the development to fail. These

limitations perpetuated a need for new methods which are

less restrictive.

With the incremental build method, producing usable

functionality earlier is key. The full requirements of the

system are known upfront but not implemented all at once.

Due to budgetary and/or schedule constraints, the

requirements are prioritized and implemented in a build

based on priority. The initial build contains some basic

functionality and is fielded. Each successive build will

contain more of the requirements. The incremental build

method is complete when all the requirements are

implemented.

The spiral method allows the development to proceed

without knowing the full requirements of the system upfront.

Through each iteration, the requirements evolve as more

information is gathered and learned about the system. The

spiral method is complete when no additional requirement is

formulated in the last iteration of the spiral.

Table 1 [Ref. 5] summarizes the differences in each of

the three software methods.

Program Strategy
Define All

Requirements
First?

Multiple
Development

Cycles?

Field Interim
Software?

Waterfall Yes No No

Incremental
(Preplanned Product
Improvement)

Yes Yes Maybe

Spiral No Yes Yes

Table 1 - Software Methods [Ref. 5]

In any of these methods, the following phases of

developing a software system remain the same:

• Requirements,

• Design,

• Implementation, and

• Test.

The maintenance phase of the software development cycle

is not addressed in this thesis as the focus is purely on

the development of software systems. [Ref. 6] provides a

detailed discussion on the maintenance of software systems.

1. Requirements

The requirements phase is the first phase in the

software development process. The requirements phase allows

stakeholders to form a concensus as to system requirements.

System requirements provide the foundations for all system

development and test. Established requirements reduce the

risks of building a system that does not meet the needs of

the end user.

The requirements phase forms a basis for defining the

software system to be built. It consists of requirements

identification/definition, analysis and management. It is

concerned with the 'what1 of the problem.

a) Requirements Identification

Requirements seldom come ready made from the

information process. Normally, when the initial

requirements are provided, it is very generic and abstract.

It may be nothing more then just an idea. However, a system

cannot be built based on just an idea. The requirements

phase tries to turn the idea(s) into a concrete set of

requirements that a system can be built from.

The requirements include the functions, attributes

and constraints of the system to be built. Functions are

tasks to be performed by the system. They are the verbs

describing the actions the system will perform. To identify

these functions involves eliciting them from the customer,

users, and other stakeholders. This can be accomplished by

interviewing the customer, users and stakeholders,

brainstorming, prototyping, questionnaires, etc.

10

During requirements elicitation, the system

requirements are derived from domain experts, people

familiar with their domain but not necessarily with building

software systems. The system developers must therefore be

conversant in the terms and limitations of the domain, since

the domain experts are probably not conversant in the terms

and limitations of software engineering.

The attributes are characteristics the customer

desires. They are the adjectives and adverbs. Many refer

to attributes as nonfunctional requirements because the

customer wants them but they are not things the system will

do.

The constraints are objective statements of the

attributes. They place quantitative limits or constraints

on the customer's desires. The most common constraints on

system requirements are time and money.

When the functions, attributes and constraints are

gathered, the initial requirements evolve into a more

specific, more detailed, and less ambiguous set of refined

requirements. Eventually a set of highly detailed

requirements emerges from the initial idea(s). When all the

requirements are gathered, they are ready to be analyzed.

11

b) Requirements Analysis

Requirements analysis serves to make qualitative

judgments, i.e., completeness, consistency, feasibility,

about the systems requirements and to ensure that everyone

involved in developing the system understands the basic

objective. The requirements gathered in the

identification/definition phase are further broken down and

analyzed. This can be performed using use cases and context

diagrams to understand the why, what, and how of the system.

A use case is a sequence of events, performed

through a system that results in an observable result of

value for a particular actor. It describes the functional

and dynamic behavior of the system. Each use case describes

a particular way the system is to be used. A use case

consists of actors, external events and system responses.

A context diagram is used to capture the world of

interest to the system, including the actors which the

system must interact. It also captures the messages and

events flowing between the system and its environment.

Most systems to be built are complex and have many

states. In this case, a state-transition diagram can be

used to show how the system transitions from one state to

the next.

12

The diagrams produced and the functions,

attributes and constraints gathered all comes together into

a requirements specification. This forms the functional

baseline for the system.

The requirements specifcation must be communicated

and agreed upon by all relevant parties. It serves as a

basis for design and for test. Good requirements exhibit

the following characteristics [Ref. 7]:

• Lack of ambiguity

• Completeness

• Consistency

• Traces to Origins

• Avoids design

• Requirements are enumerated

Adopting a requirements documentation technology

is fairly straightforward. A standard that fits the

lifecycle requirements of the system should be chosen and

tailored to fit the system's specific requirements, then

applied. Many standards exist that can be adopted to suit an

organization's needs. A good resource is the compilation by

Thayer and Dorfman [Ref. 8] . Twenty-six different

requirements specifications are reprinted under one cover.

13

c) Requirements Management

A requirements traceability matrix provides a

level of project control and assured quality that is

difficult to achieve by any other means. Analyzing

requirements and verifying the design is very cumbersome in

a large development effort. For this reason, a requirements

traceability matrix normally documents the requirements in a

database. The matrix lists information for each testable

requirement, its source, title, description, design

component to which it is allocated, the software module that

implements it, and the test reference that verifies it.

The requirements trace begins at the start of the

development when the initial requirements are provided. The

software requirements derived in the requirements phase are

also added to the requirements trace repository.

A requirements trace is performed to ensure the

requirements are satisfied in each phase of the development

process, and ultimately, the system built meets the system

requirements. During the maintenance phase of a system, the

requirements trace provides a methodical and controlled

process for managing the changes in a system.

2. Design

The design phase consists of 'how' to solve the

problem. This is the period of time in the software life

14

cycle during which the designs for architecture, software

components, interfaces, and data are created, documented,

and verified to satisfy the system requirements established

in the requirements phase.

The design phase can be broken down into two sub-

phases, the top-level design and the detailed design. The

top-level design is where the system architecture is

defined. The detailed design defines the design of the

subsystems, modules and components that make up the overall

system.

The top-level design is also known as the architecture

definition, the process of defining a collection of hardware

and software components and their interfaces to establish

the framework for the development of a computer-based

system. The top-level design forms the allocated baseline.

In defining the system architecture, six key areas,

common to most development efforts, need to be addressed.

This will help to refine the system architecture and

establish the details of the software architecture.

• Performance: For real-time applications, the
system's timing aspects must be examined. This
includes the real-time computational and operational
requirements for the applicable subsystems and
modules. The software development platforms, tools,
and methodologies used must support the system
performance requirements. For example, the effect
of a CORBA platform on a distributed application's

15

•

•

performance must be determined prior to selecting
the platform.

Error Handling: The system must have a consistent
way of handling errors. To ensure there is a
consistency in error handling, a systemwide
interface which provides a standardized error
detection and reporting mechanism should be defined
as part of the system architecture.

Fault Tolerance: Based on the system requirements,
the fault modes of the system should be specified
and the affected modules' behavior identified.

Concurrency: In the case of distributed systems,
concurrency issues must be addressed and strategies
incorporated to avoid deadlocks caused when multiple
processes try to access an object.

Connectivity: All external interfaces for the system
must be identified and defined. Data bandwidth and
related connectivity issues should be examined
during high-level analysis and design to avoid
architectural design flaws and shortcomings.

User Interface: The user interface design should
start in the early stages of system development.
This allows customers to work with the interface
early enough in the process to provide useful
feedback. This also gives the interface time to
evolve and mature before deploying the system.

in the detailed design phase, the system architecture

is broken down into software items and further refined, and

the internal interfaces between each software item are

defined. The details of the elements listed in the top-

level design are filled in. Enough detail must be included

for the programmers to write the software.

•

16

3. Implementation

The implementation phase is also known as the coding

phase. In this phase, the developer takes the detailed

design where the system is broken into small configuration

items and begins to implement each software configuration

item in code. The code is also broken down further into

software units.

Any design with more than one subroutine has a

structure. The following four structural issues should be

addressed when implementing a design: coupling, cohesion,

information hiding, and modularity. [Ref. 9]

• Coupling: Coupling is a design property that states
how much each unit depends on the others. Loose
coupling is desired. In loose coupling, the
implementation of one unit does not depend on the
implementation of another.

• Cohesion: Cohesion describes how well the
statements inside a unit relate to one another.
High cohesion, which is what is desired, is when one
unit performs one function or when the statements
are related logically.

• Information hiding: Information hiding seeks to
hide the details of the software design that the
programmer wishes the public not to see. The most
common items to hide are those that have a high
probability of changing.

• Modularity: Modularity keeps design secrets hidden.
Information hiding hides important design decisions
in modules. The modules provide the software's main
structure.

17

The procedures for breaking down the code into software

units and the number of units per software configuration

item is dictated by agreed coding standards. Coding

standards keep the code consistent and easy for the entire

team to read as well as ease life cycle maintenance.

In the implementation phase, peer reviews are conducted

to ensure that each configuration item design provides the

features and interfaces required to meet the configuration

item's needs.

4. Test

Testing refers to the act of detecting the presence of

faults in code or supporting documentation, or demonstrating

their absence by confirming that requirements are met, and

is distinguished from debugging where faults are isolated

and corrected. An error is a mistake made by a software

developer. Its manifestation may be a textual problem in

the code or documentation called a fault or defect. A

failure occurs when an encountered fault prevents software

from performing a required function within specified limits.

The definitions in this paragraph define several important

testing terms and were adapted from a paper entitled, "An

Examination of Selected Commercial Software Testing Tools"

[Ref. 10].

18

Since so many software test activities are on the

critical path of the development schedule, test development

should be scheduled and accomplished as early as possible to

be prepared for the various phases of testing in the test

development lifecycle. This implies that the test effort

and software development effort should be started

concurrently, and that a software test development lifecycle

should be identified and coordinated with the software

development lifecycle. Static analysis activities apply to

all phases of the software development lifecycle. One

published estimate reports that 50 percent or more of the

software errors are due to incorrect or modified

requirements specifications. It is a well-known fact that

software reviews can significantly reduce the number of

errors in the later phases of development.

Testing should be considered at both the requirements

analysis and design phases. Software requirements and

design information provide primary input to define test

requirements and prepare the test plans. This activity

involves testers early on the project and helps correct

requirements and design problems before they are coded when

they are more expensive to fix [Ref. 11].

Typically, there are 3 to 10 failures per thousand

lines of code (KLOC) for commercial software, and 1 to 3

19

failures per KLOC are typical for industrial software [Ref.

12]. The cost of correcting defects increases as software

development progresses. For example, the cost of fixing a

requirements fault during operation can be over 100 times

the cost of fixing that same fault during early development

stages [Ref. 13]. Consequently, timely defect detection is

important.

Testing must be treated and scheduled as an integral

part of the development effort. In practice, most projects

sandwich the whole testing phase at the end of the

development effort and before the installation phase, which

has a fixed start date, so when the schedule slips, the

allocated time for the testing phase shrinks and ultimately,

there is almost never enough time for testing. Without the

priority given to the testing phase to minimize the effects

of schedule slippage and without scheduling testing

throughout the development effort, timely defect detection

becomes a very daunting task, if not impossible.

There are many forms of testing that can be scheduled

throughout the development effort. Four test execution

stages are commonly recognized: unit testing, integration

testing, system testing, and acceptance testing. In unit

testing, each software unit is tested in isolation, often by

the developer. Unit tests provide a safety net of

20

regression tests and validation tests so that one can

refactor and integrate changes effectively. Creating the

unit test cases before the code helps even further by

solidifying the requirements and improving the developer's

focus. In integration testing, these software units are

combined so that successively larger groups of integrated

software and hardware units can be tested. System testing

examines an integrated hardware and software system to

verify that the system meets its specified requirements.

Acceptance testing is generally a select subset of system

test cases that formally demonstrates key functionality for

final approval and is usually performed after the system is

installed at the user's site.

Functional {black box) tests are derived from

system-level, interface, and unit-level specifications.

Structural (white box) tests require knowledge of the source

code including program structure, variables, or both. With

functional strategies, test data is derived from the

program's requirements with no regard to program structure.

Functional approaches are language-independent. In

structural strategies, test data is derived from the

program's structure.

Functional strategies can be applied at all testing

levels. System tests can be defined at the requirements

21

analysis phase to test overall software requirements.

During the design phase, integration tests can be defined to

test design requirements. During the coding phase, unit

tests can be defined to test coding requirements.

Prototyping is another form of testing. It evaluates

or tests requirements specifications at the

conceptualization phase or the requirements analysis phase

and can save a considerable amount of development time when

properly managed. Prototyping is becoming more widely

accepted and implemented as an iterative development

activity on many projects. The use of this technique is

being accelerated by the availability of more automated

tools that enable quicker and easier prototyping of system

components.

B. SOFTWARE DEVELOPMENT USING COTS COMPONENTS

With DODD 5000.l's direction to use COTS/GOTS

components in 1996 for any newly developed system, the

traditional software development process has been undergoing

some major changes as more and more developers transition to

using COTS components. These changes must be based on facts

and lessons learned in using COTS components to build

systems.

22

With the introduction of COTS components as a way of

building systems, many myths and misconceptions have to be

overcome in order to effectively use COTS components. In

the January 2000 issue of Crosstalk [Ref. 3], Tracz

addresses some of the myths encountered when using COTS

components. Some of these myths include:

• An open system architecture solves the COTS
component interoperability problem.

There is no standard definition for 'open system'
and *plug and play' does not always work.

• COTS components come with adequate documentation.

COTS components come with features. Most COTS
components are treated as black boxes and the
documentation, such as design disclosure, required
from a traditional software developer for a
component is considered proprietary and never
provided by a COTS supplier.

• You do not need to test COTS components.

Because you do not know the details of the design
and documentation is not adequate, testing of COTS
components becomes very critical to its acceptance.

• You can configure a COTS-based system to meet your
requirements.

The cost of modifying COTS, or providing extra
functionality is very difficult when there is little
control or insight into how the COTS product was
designed, developed and tested.

• If you are a large enough customer, you can
influence COTS component suppliers.

In general, the marketplace drives the COTS
component suppliers. The size of the supplier's

23

customer base determines his response to user needs.
The smaller the customer base, the higher the COTS
component cost and the better the service.

• COTS products are selected based on extensive
evaluation and analysis.

In the past, COTS products were selected based on
slick demos and good marketing. To effectively use
COTS products in a software development process,
this myth needs to be turned into a reality where
COTS components are selected based on best fit to a
set of system requirements.

In addition to those myths listed in the Crosstalk

article, here are a few more which should be overcome and

the truths understood when using COTS components.

The idea that COTS/GOTS components can be used to

shorten the system development time is a myth. Most

COTS/GOTS products are not just "plug and play". The

traditional implementation phase, where software coding

takes place, may be reduced when using COTS/GOTS components

but when done correctly, the overal software development

cycle may still consume the same amount of time. The market

survey, the COTS/GOTS selection, evaluation, integration and

testing process more than make up for the time reduced when

using COTS/GOTS components.

When COTS vendors follow the same standards, their

products can interoperate with each other is a myth. The

vendors of existing products work to differentiate their

product from those of competitors. This leads to a

24

marketplace characterized by a vast array of products and

product claims, extreme quality and capability differences

between products, and many product incompatibilities, even

when they purport to adhere to the same standards'.

Systems can be built by purchasing the right COTS

components and loading them onto the target platform is a

myth. COTS/GOTS software is not developed to interoperate

with other COTS/GOTS/legacy software. When a system is

built with these products by just loading these components

onto a machine, without an integration effort,

interoperability problems occur. The conglomerate of

software applications on a machine does not comprise a

system. A truly integrated system is greater than the sum

of its parts; it provides new services and increased value.

Most phases of the traditional software development

process are at least minimally affected when COTS software

components are used. With COTS/GOTS components, a structured

software development approach should still be followed.

However, the actual tasks in each phase of the development

will differ from the tasks in a traditional software

development.

COTS-based development differs from the traditional

software development in that the COTS selection process must

occur early in the lifecycle. COTS evaluation and selection

25

become a critical part of the early analysis process rather

than a peripheral activity within the later design process.

[Ref. 14]

Unlike COTS software, software developed from scratch

is designed to be interoperable. That is, it is assumed

when a system is designed by one development team, the

system will be internally consistent. However, in a system

developed with multiple COTS/GOTS/legacy software packages,

there are almost certain to be disparities in the data

formats and semantics when one application has to

communicate with another application or when multiple

applications need to share a common data set. The

challenges of COTS incompatibility, inflexibility,

complexity, and transcience must be addressed in the

selection process because the infrastructure will ultimately

consist of a suite of COTS components that must operate in

harmony.

1. Requirements with COTS

The requirements phase is minimally effected when COTS

products are considered in the development. The traditional

activities of identification, analysis and documentation of

the requirements would still apply with COTS. unlike in the

traditional software development, requirements must be

developed with the use of COTS in mind. The requirements

26

should be flexible enough to allow maximum leverage of COTS

components.

Requirements drive the COTS selection process. When

using COTS, the requirements derived for the system would be

used to conduct a market survey of the available COTS

products for the intended system and to evaluate the

potential COTS products to be integrated in the system.

A market survey is conducted to see what is available

on the commercial market to meet the requirements of the

system. In most instances, there will not be a single

product in the commercial market that will meet all the

system requirements for any system of appreciable

complexity. For this reason, the requirements for a system

should be tailored. Those requirements intended to be

fulfilled by COTS product (s) should form the basis for the

market survey. These requirements should be prioritized and

each requirement should indicate a threshold and objective

range, where the threshold is the absolute minimum

requirement and the objective is the ultimate requirement.

This range provides a comparison of the candidate COTS

products for selection.

2. Design with COTS

In the architecture definition phase, a system

architecture is developed for the overall system. With the

27

use of COTS, the design requirements and guidelines that

will minimize dependencies between the COTS products and the

components under development must be specified to reduce the

effect of COTS product upgrades.

COTS must usually be treated as black boxes, or at best

very opaque boxes. As a result, many properties of the COTS

product need to be discovered through systematic

investigation. This is referred to as qualification.

Once the COTS products are identified in the market

survey, the candidate COTS products must be qualified. The

qualification process consists of determining ^fitness for

use' of previously developed components that are being

applied in a new system context. Qualification is also a

process of selecting products in a marketplace of competing

products.

There are two phases of qualification: discovery and

evaluation. In the discovery phase, an evaluation copy of

the COTS product is obtained and run to identify and match

the properties of a COTS product to the system's

requirements. Some of the properties include functionality,

data types supported and other aspects of a software

component's interface. These properties also include

quality aspects that are usually more difficult to isolate,

such as reliability, predictability, and usability.

28

In some circumstances, it is also reasonable to

discover ^non-technical' properties, such as the vendor's

market share, past business performance, and process

maturity of the developer's organization. The non-technical

properties help to identify the maintenance risks of the

product.

Once the relevant properties of a COTS product have

been discovered, it is possible to identify which properties

exhibited by a component are in conflict with other

components, or with a system design. This is the evaluation

phase.

Using the properties discovered in the earlier phase,

each of these properties are prioritized, evaluated and

compared amongst the COTS product candidates. The selected

COTS products for an intended system should be a *best fit'

as it will be rare, if not impossible, for a COTS product to

match the intended system requirements exactly. The

conflicts, or mismatches, must be repaired through component

adaptation in the implementation phase.

3. Implementation with COTS

When using COTS, the biggest impact is to the

implementation phase. The traditional coding that occurs

during the implementation phase may be minimal when COTS

software is used. In contrast to traditional development,

29

where system integration is often the tail end of an

implementation effort, COTS software integration is the

centerpiece of the approach. Thus, implementation has given

way to integration as the focus of system construction.

Because individual COTS software components are written

to different requirements, and are based on differing

assumptions about their context, the COTS software must

often be adapted when used in a new or integrated system.

Normally, this adaptation is performed by developing the

middleware (glue and wrapper code) to enable the

COTS/GOTS/legacy software to intercommunicate.

The middleware software must be adapted based on rules

that ensure conflicts among the different software

components are minimized. The degree to which a software

component's internal structure is accessible suggests

different approaches to adaptation:

• white box, where access to source code allows a
software component to be significantly rewritten to
operate with other software components.

• opaque box, where source code of a software
component is not available for modification but the
software component provides its own extension
language or application programming interface (API).

• black box, where only a binary executable form of
the software component is available and there is no
extension language or API.

30

Each of these adaptation approaches has its own

advantages and disadvantages; however white box approaches

can result in serious maintenance and evolution concerns in

the long term. Wrappers and glue code are specific

middleware programming techniques used to adapt opaque and

black box components.

Once the mismatches between components have been

removed, it is possible to assemble them into systems, and

to evolve the system through re-assembly with different

components. This is often referred to as COTS integration.

This process may be performed repeatedly until the best

solution is attained.

4. Testing with COTS

With COTS, testing at both the requirements analysis

and design phases becomes very critical to the success of

using COTS in a system. When testing is performed early on

the COTS component, risks can be mitigated in a timely

manner. Early testing can make the difference between a

successful project using COTS and a failed project.

Similar to unit testing when software is developed from

scratch,, prior to integrating COTS/GOTS components into a

system, each of the COTS/GOTS components should undergo its

own independent testing. Testing should be performed on the

COTS/GOTS products to ensure that it fulfills the specified

31

system requirements, the COTS/GOTS components function as

advertised and catastrophic faults are detected as early in

the testing phase as possible so that timely corrective

action can be taken. Timely corrective action may include

reporting the problem back to the vendor to get the

problem(s) fixed, deciding to disqualify the COTS/GOTS

component, creating a workaround, or building a wrapper to

hide the function causing the fault.

Testing becomes more nebulous with COTS because we do

not know what the product really does i.e. cannot view the

source code. Because of this, COTS must be treated as a

black box and the inputs/outputs to/from the black box must

be thoroughly tested to ensure correctness. All the

dependencies between COTS/GOTS/legacy components must be

tested and verified. Testing of the interfaces between the

components is critical to ensure system interoperability.

The output from one component must be consistently

interpreted when provided as input and manipulated in the

next component.

Prototyping is used to determine the overall

feasibility of the system and also to demonstrate the user

interface to be provided with the system. Prototyping is

especially useful when using COTS to allow early user

32

feedback on the COTS components, especially when the COTS

components contain GUIs.

33

THIS PAGE LEFT INTENTIONALLY BLANK

34

III. ARCHITECTURAL FRAMEWORK

A. INTRODUCTION

In the design phase of the COTS software development

process, a target architecture needs to be formulated where

multiple COTS/GOTS components and legacy software can

operate seamlessly together to form a system. In order to

successfully create a target architecture for an

interoperable COTS/GOTS/legacy system, an architectural

framework must exist to draw from.

Many architectural frameworks are available on the

market today to develop a target architecture for an

Information Technology (IT) system - Technical Architecture

Framework for Information Management (TAFIM), The Open Group

Architectural Framework (TOGAF), the Open Group's

Distributed Computing Environment (DCE), IEEE 1003.0, the

NCR Enterprise Architecture Framework, and the Defense

Information Infrastructure Common Operating Environment (DII

COE) , to name a few. Each architectural framework has its

own specific focus.

DoD's TAFIM provides guidance for the evolution of the

DoD technical infrastructure. It is currently replaced by

the Joint Technical Architecture (JTA). TAFIM provides the

services, standards, design concepts, components, and

35

configurations that can be used to guide the development of

technical architectures that meet specific mission

requirements [Ref. 15].

TOGAF is a tool for defining an IT architecture. TOGAF

was developed by members of The Open Group, working within

the TOGAF Program. The original development of TOGAF in

1995 was based on the TAFIM, developed by the US Department

of Defense.

The essentials of TOGAF consists of three parts, the

architectural development model (ADM), the foundation

architecture and the resources [Ref. 16].

Another architectural framework developed by The Open

Group includes the Distributed Computing Environment (DCE),

which provides a set of services that can be used as the

basis of a DCE-Centric Architecture related to TOGAF [Ref.

17].

IEEE 1003.0, also known as POSIX 1003.0, is an

architectural framework built on open systems standards.

The NCR Enterprise Architecture Framework is based on

NCR's architecture practice Global Information Technology

Planning (GITP), and NCR's architecture model Open

Cooperative Computing Architecture (OCCA 6) . The NCR

Enterprise Architecture Framework is created to guide the

36

development of systems, industry, and customer specific

architectures.

The DU COE architectural framework seeks to build

systems around a common operating environment using reusable

software components called segments to function in a joint

arena, promoting data sharing within systems and between

systems. It implements a 'plug and play' open architecture

designed around a client/server model [Ref. 18].

Many of these architectural frameworks were developed

prior to the demand for using COTS in systems integration

and during a time when stovepipe systems were built.

Because of this, the existing architectural frameworks

available today do not sufficiently address the integration

of an interoperable, distributed, heterogeneous system

architecture composed of COTS/GOTS/legacy components.

1. Architecture vs. Architectural Framework

The terms, architecture and architectural framework are

often used interchangeably when in fact, there is a clear

distinction between the two terms. Before deeply

progressing into this chapter, the definitions of

architecture vs. architectural framework needs to be defined

to clarify the distinction.

37

The Open Group defines Architecture as follows:

Specifically, an architecture is a formal
description of an information technology (IT)
system, organized in a way that supports reasoning
about the structural properties of the system. It
defines the components or building blocks that
make up the overall information system, and
provides a plan from which products can be
procured, and systems developed, that will work
together to implement the overall system.

The Open Group provides an analogy to improve

understanding of the architecture definition:

One of the most common approaches to answering the
question of what is an architecture is to draw an
analogy between the architecture of buildings and
the architecture of computing systems. While there
are a number of things wrong with this kind of
analogy, it can serve to illustrate basic
concepts.

Actually, in today's highly distributed computing
environments, a better analogy is with the
discipline of Planning or Urban Design rather than
with Architecture as applied to individual
buildings.

On this basis, then, the difference between a
computer system with an architecture and one
without, is the difference between an urban sprawl
that has just grown willy-nilly, and a township
where thought has been given to the ability to
link buildings and districts together to form
whole communities that function well and serve the
needs of its inhabitants.

Continuing The Open Group's architecture analogy, like

the urban plans used for a township to build whole

functioning districts and communities, an architectural

38

framework is like the building standards and zoning laws

that exist to guide the urban development architecture in

city planning.

The Open Group defines architectural framework as:

An architectural framework is a tool which can be
used for developing a broad range of different IT
architectures. It should describe a method for
designing an information system in terms of a set
of building blocks, and for showing how the
building blocks fit together. It should contain a
set of tools and provide a common vocabulary. It
should also include a list of recommended
standards and compliant products which can be used
to implement the building blocks.
www.opengroup.org/public/arch

2. Importance Of An Architecture & An Architectural
Framework

As systems become larger and increase in complexity as

in C4ISR systems, it becomes even more important to have an

architecture. A software architecture improves our ability

to effectively construct large-scale software systems [Refs.

19, 20] . An architecture allows us to communicate

effectively to the various participants in a development

activity what to build, what it must do, and how to build it

[Ref. 21].

Not only does the architecture allow us to effectively

construct software systems but it also allows us to

effectively maintain the system once it is built. The

39

absence of a thoughtful architectural act assures that there

is no initial accommodation to the changes that will propel

the product from version to version. This is especially

important in an evolutionary software development process

and in today's time of COTS usage in software development.

With an evolutionary development process, each cycle of an

evolution requires additional capabilities. Without an

architecture to support this, each cycle would entail

significant changes to the existing system structure in

order to tack on the additional capabilities. With COTS

usage in software development, the architecture also must

minimize dependencies between the COTS products and the

components under development to reduce the effects of COTS

product upgrades/replacements throughout the evolutionary

cycle.

Other motivations for a software architecture include

[Ref. 21]:

• To support analysis and prediction prior to creating
concrete solutions.

To move from expensive point solutions to solution
families (analogous to product lines from the
software vendor community) that emphasize common
parts and reuse.

To give guidance and controlling information
analogous to commercial building codes which benefit
the community such as standards to be followed,

40

preplanned interoperability requirements, use of
COTS software products, etc.

Using an architectural framework will speed up and

simplify architecture development, ensure more complete

coverage of the designed solution, and make certain that the

architecture selected allows for future growth in response

to the changing needs of the business. [Ref. 16]

Neither adhering to a structured COTS software

development process nor the design of an architecture by

themselves can guarantee an interoperable system without

implementing the tools from an architectural framework that

addresses the system interoperability issues.

B. TOGAF

TOGAF is a tool for defining an IT architecture. TOGAF

was developed by members of The Open Group, working within

the TOGAF Program. The original development of TOGAF in

1995 was based on the TAFIM, developed by the US Department

of Defense.

TOGAF consists of three parts, the architectural

development model (ADM), the foundation architecture and the

resources [Ref. 16] .

41

1. Architectural Development Model

The Architecture Development Method (ADM) is the core

of TOGAF. It describes the steps to follow in developing an

IT architecture. The ADM is a cyclic process consisting of

seven phases.

• Initiation and Framework - Identify requirements,
initiate architecture development cycle.

•, Baseline Description - Capture relevant existing
environment to build technical architecture,
including a description of the current system and
its functions, statements of the constraints imposed
by the internal organization and external
environments, assumptions, and current architectural
principles embodied in the current system.

• Target Architecture - Define target architecture.
In defining the target architecture, eight steps are
involved.

• Represent the baseline using the Open Group
framework to give a common starting point.

• Consider a number of architectural views to
ensure all aspects of system are considered.

• Select a high-level model for the architecture.

• Select the services required.

• Identify and validate business goals are met.

• Establish a set of criteria for service
selection.

• Define the architecture in detail.

• Conduct a gap analysis.

42

• Opportunities and Solutions - Evaluate and select
major work packages. This forms the basis for the
implementation.

• Migration Planning - Prioritize work, cost/benefit
analysis, develop outline plan.

• Implementation - Develop full plan and execute.

• Architecture Maintenance - Establish procedure for
maintenance of new baseline. The maintenance
procedure for the new baseline will typically
provide for continual monitoring of new developments
in technology and changes in business environment,
and for determining whether to formally initiate a
new architecture evolution cycle.

2. Foundation Architecture

The TOGAF Foundation Architecture comprises the TOGAF

Technical Reference Model (TRM) and The Open Group's

Standards Information Base (SIB). The Foundation

Architecture is an architecture of generic services and

functions that provides a foundation on which more specific

architectures and architectural components can be built.

TOGAF's TRM is derived from the TAFIM TRM. The TRM

provides a model (figure 1) and taxonomy of generic platform

services. It focuses on the services and structure of the

underlying platform necessary to support the use of

applications, by centering on the interfaces between the

platform and supported applications, and between the

43

platform and the external environment. TOGAF's TRM contains

three entities:

• Application Software.

• Application Platform.

• Communications Infrastructure.

and two interfaces:

• Application Platform Interface.

• Communications Infrastructure Interface.

44

iW53'B"=;a:i, ..' :- n-'j

■Infrastructure-
Applications

*.«;:>/»

'•■■•"•_'. ;

' Business >,--
Applications

IflrCI
%P$%j$$/4 "'-S^.iMßA

mm

Sffi
■QÖStSfj
.-; .. ■»■■

SHU»

?is.i>«!~ä3Ö; iSI»?*8; I:. '•: :_.■ : :: .- -

Stil S|ii|§i^^^^^^^Hi^i§^^^^^^^^liSlÄ

:C^miühicätipTi:';inf!rästrUc:tuf;e.i HHI

Figure 1 - Technical Reference Model From Ref. [16;

45

There are two categories of application software in the

TRM: the infrastructure applications and the business

applications. The infrastructure applications provide

general purpose functionality such as word processing,

spreadsheet, electronic mail applications, and presentation

software. Business applications are tailored applications

that meet a particular enterprise's needs, i.e. in the C4I

world, an application to track the routes of a deployed

unit.

The Application Platform in the TOGAF Technical

Reference Model is a single, generic, conceptual entity.

From the viewpoint of the TOGAF TRM, the Application

Platform contains all possible services. These services

include:

• Data Interchange Services.

• Data Management Services.

• Distributed Computing Services.

• Graphics and Imaging Services.

• International Operation Services.

• Network Services.

• Operating System Services.

• Security Services.

• Software Engineering Services.

46

• System and Network Management Services.

• Transaction Processing Services.

• User Interface Services.

In a specific target architecture, the Application

Platform will contain only those services needed to support

the required functions and many will include additional

services to support application software specific to the

organization.

The Application Platform for a specific target

architecture will typically not be a single entity, but

rather a combination of different entities for different,

commonly required functions, such as Desk Top Client, File

Server, Print Server, Application Server, Internet Server,

Data Base Server, etc., each of which will comprise a

specific, defined set of services necessary to support the

specific function concerned.

The Communications Infrastructure provides the basic

services to interconnect systems and provide the basic

mechanisms for opaque transfer of data. It contains the

hardware and software elements which make up the networking

and physical communications links used by a system, and of

course all the other systems connected to the network. It

deals with the complex world of networks and the physical

47

Communications infrastructure, including switches, service

providers and the physical transmission media.

The Application Platform Interface specifies a complete

interface between the Application Software and the

underlying Application Platform across which all services

are provided. A rigorous definition of the interface results

in application portability, provided that both platform and

application conform to it. For this to work, the API

definition must include the syntax and semantics of not just

the programmatic interface but also all necessary protocol

and data structure definitions.

The Communications Infrastructure Interface is the

interface between the application platform and the

communications infrastructure.

The SIB provides a database of standards that can be

used to define the particular services and other components

of an organization specific architecture that is derived

from the TOGAF Foundation Architecture.

3. Resources

The resources comprise the TOGAF Resource Base - a set

of tools and techniques available for use in applying TOGAF

and the TOGAF ADM. It contains the Architecture Description

Markup Language (ADML) and the Architectural Views. ADML is

used to define architectural building blocks in a way that

48

allows their interactions with other building blocks to be

captured. Architectural Views provides different views for

consideration when developing an architecture. These views

include function, security, management, builder's, data

management, user, computing, and communications.

49

THIS PAGE LEFT INTENTIONALLY BLANK

50

IV. PROPOSED ARCHITECTURAL FRAMEWORK

Now that DoD has moved to building distributed,

heterogeneous, C4ISR systems with COTS software, the need

for a new architectural framework to integrate

COTS/GOTS/legacy software is quite evident. The existing

architectural frameworks on the market today do a very good

job at addressing the building of traditional stovepipe

software systems where the interoperability of distributed,

COTS/GOTS/legacy systems is not an issue. Most lightly talk

about COTS but do not sufficiently address the details

required or the tools necessary for developing interoperable

systems and architectures with COTS/GOTS/legacy components.

TOGAF addresses interoperability but limits it to the

communications infrastructure interface and does not address

the more difficult issue of data interoperability, the

correct interpretation from one system to another of the

semantics of the data.

Of the three architectural frameworks mentioned, TOGAF

is the most manageable and comes closest in addressing the

needs of distributed, heterogeneous systems but it also

lacks the details and the tools necessary for a COTS

development in this environment. For this thesis, TOGAF is

51

chosen as the architectural framework to enhance to address

distributed, heterogeneous systems.

The proposed architectural framework uses TOGAF as a

basis and seeks to address the interoperability issues

encountered when building target architectures where

integrating COTS/GOTS/legacy components to form a

distributed, heterogeneous system is essential. It builds

upon the TOGAF foundation and includes additional tools like

the Object .Request Brokers (ORBs), middleware (glue and

wrapper software) and Extensible Markup Language(XML) to

assist in the development of interoperable COTS/GOTS/legacy

systems.

A. TOGAF UPDATES

In TOGAF, the Architectural Development Model is

prescriptive, where detailed guidelines and procedures for

building a target architecture are provided. The

guidelines and procedures do not address the building of an

architecture using COTS/GOTS/Legacy components and

superficially address interoperability by just stating

interoperability issues should be listed in the second phase

of the architectural development cycle, baseline

description, but does not specifically address how to

identify or resolve these interoperabilty problems.

52

This thesis will use the existing TOGAF and modify it

to incorporate the specific guidelines and procedures

necessary to build and maintain an architecture using

COTS/GOTS/Legacy components. The bulk of the procedural

changes are concentrated in TOGAF's Architectural

Development Model.

In the first phase of the architectural development

model,, Initiation and Framework, the inputs include the

business goals, financial constraints, time limits, mission

statement, strategic plans and current business system

description. In addition to these inputs, when COTS/GOTS

products are a consideration, the architectural framework

also should include a process for conducting a market survey

to evaluate what is available on the market to meet the

needs of the system.

DoD Regulation 5000.2-R, which implements DoD Directive

5000.1 and provides policies and procedures for Major

Defense Acquisition Programs (MDAPs) and Major Automated

Information Systems (MAIS) Acquisition Programs, encourages

market research [Ref. 22].

Market research and analysis shall be conducted to
determine availability and suitability of existing
commercial and non-developmental items prior to
the commencement of a development effort, during
the development effort, and prior to the
preparation of any product description.

53

The market survey is conducted based on high level

requirements for the intended system. A market survey

should be conducted to gather the list of available

COTS/GOTS candidates for the system. The output of the

Initiation and Framework phase should include the list of

candidate COTS/GOTS components.

The second phase, baseline description, consists of the

high level description of the characteristics of the current

system including its architecture. In this phase the

current system is evaluated to determine if there are any

existing interoperability issues needed to be addressed,

lessons to be learned, items to be reused, and serves as a

starting point for the system requirements and architecture.

The only change to this phase is the order. This phase

should precede the Initiation and Framework phase as the

functions listed for the baseline description phase should

be performed prior to the start of looking at the

architectural framework for the target system. When a

current system does not exist, this step is skipped.

The third phase, Target Architecture, is where the

target architecture for the system is identified. In this

phase, a number of architectural views are reviewed to

ensure all aspects of the system are considered. unlike

54

newly developed software, the upgrade cycle of COTS/GOTS

components are not within the system developer's control.

Thus, when using COTS/GOTS components, an architecture which

minimizes dependencies between the COTS/GOTS products and

the components under development to reduce the effect of

COTS/GOTS product upgrades should be considered.

Based on the services required of the COTS/GOTS

components, a tradeoff analysis should be conducted amongst

the candidate COTS/GOTS components. To aid the tradeoff

analysis, a COTS/GOTS selection and evaluation plan is

created in this phase. For specific details on what should

be addressed in the evaluation/selection process, see

appendix A.

Because component-based architecture development is a

relatively new field, systems integrators still struggle

with methods to keep abreast of technology advances and ways

to determine which products best suit their needs. In the

rush to make a decision, the choice of COTS products is not

made based on a strong business case or the total ownership

cost.[Ref. 3]

By following a formal COTS/GOTS selection process, the

mistake of blindly rushing to make a decision of which

COTS/GOTS product to use can be avoided. A formal selection

process based on system requirements is used to mitigate the

55

risks associated with the acquisition of COTS/GOTS products.

The COTS/GOTS selection process and the evaluation plan are

both created during the design phase of a COTS software

development process once the architecture is first

articulated, identifying the use of COTS/GOTS components.

The system requirements, derived during the requirements

phase, feed the COTS/GOTS market survey, selection process

and evaluation plan. When using COTS/GOTS components in a

software development process, the requirements for a COTS

software development process should be flexible enough to

allow maximum leverage of COTS/GOTS components.

Once the candidate COTS/GOTS components are evaluated

and a set selected, a model of prospective building blocks,

including COTS, GOTS, legacy and newly developed components,

a detailed architecture can be created to show the

interrelationships of the components.

Opportunities and Solutions is the fourth phase of the

Architectural Development Model. In this phase, work

packages are developed to implement the proposed

architecture. With COTS/GOTS components in the architecture,

the work packages must be developed with the COTS/GOTS

components in mind to ensure that the work packages include

work to integrate and test the COTS/GOTS components.

Traditionally, work packages consist of software coding but

56

with a COTS/GOTS development, integration and testing should

also be included in work packages. Once the individual work

packages are completed, the individual components will then

integrate and interoperate to form a system.

Migration planning is the fifth phase of the

architecture development model. In this phase, the

individual work packages are prioritized. Outline plans

should include how the individual work packages will

integrate with COTS/GOTS components including standards to

be used. In the prioritization of the individual work

packages, testing of each integration piece should be

performed prior to the integration of the whole system.

When using COTS and GOTS, integration testing with newly

developed code and legacy components needs to be

incorporated early in the development process to identify

the potential individual interoperability problem.

Architecture maintenance is the last phase of the

architecture development cycle. The purpose of this phase

is to establish a procedure for the ongoing maintenance of

the architecture. To maintain an architecture consisting of

COTS, GOTS, and legacy components requires a continuous

monitoring and analysis of potential candidates available in

the marketplace to replace the existing COTS, GOTS, and

legacy components. Some GOTS and legacy components may

57

never be replaced as their functionality may be very

specialized, but at a minimal, an evaluation of COTS

components should be regularly conducted. The output from

this phase should include an up-to-date list of COTS/GOTS

upgrades.

Over time and in evaluating these components, a change

in the existing target architecture may need to be

considered. If the target architecture requires a change, a

new architectural evolution cycle is initiated.

Table 2 summarizes the proposed modifications (in bold,

italics) required during each phase of the architecture

development cycle to address the interoperability of

heteorogeneous systems.

Phase Inputs Outputs
Baseline Description • Existing system • Clear description

Description of the current
• Existing Architecture system and its

functions
• Assumptions
• Constraints
• Lessons Learned

Initiation and
Framework

•
•

Business goals
Strategic plans

• Results of Market
Survey

• Mission statement
• Financial constraints
• Schedule constraints
• Current business

system description
• Plan for remaining

phases
• Market survey

Target Architecture • Baseline description • A baseline systems
from Phase 1 requirements in

58

Business requirements
and architecture
drivers from Phase 2
TOGAF TRM
External constrains
Organizational
constraints
COTS/GOTS Selection
and Evaluation

Opportunities and
Solutions

Migration Planning Current architecture
Analysis of how
proposed architecture
meets business goals
and objectives
Organizational
information
COTS/GOTS product
Informatlon
Standards information
Other specification
information

TOGAF terms
A full description
of the baseline
system and the
proposed
architecture from
all relevant views.
A description of
the services
selected and a
detailed
architecture
definition of the
standards used to
implement these
services
Candidate building
blocks selected
(Including COTS,

GOTS, Legacy and
newly developed
components)
Interoperablll ty
Issues derived from
different
architectural views
Gap analysis

• Work packages
(includes
integration and
test, glue and
wrapper code to
address
interoperabili ty
issues)

Prioritized work
packages

Architecture
Maintenance

COTS/GOTS Product
Informatlon

updated list of
COTS/GOTS upgrades

Table 2 - Proposed Architecture Development Cycle

59

B. TOOLS FOR THE PROPOSED ARCHITECTURAL FRAMEWORK

Using the TOGAF Resource Base as the basic tool set for

the proposed architectural framework, additional tools are

required to address the specific integration issues with

COTS/GOTS/legacy software components and the

interoperability of systems composed of these software

components.

Interoperability is the ability of systems to provide

services to and accept services from other systems, and to

use the services so exchanged to enable them to operate

effectively together. Many COTS/GOTS systems and products

are not developed for Joint Operations. Each of these

systems usually performs only the specific task that drove

its design.

The additional tools that this thesis will address

include object request brokers, wrappers, glue code and the

Extensible Mark Up Language (XML). Wrapper, and glue code

are tools to address two different aspects of system

integration with COTS/GOTS/legacy software components while

an object request broker is a tool to address system

interoperability and XML is a tool to address data

interoperability.

60

1. Object Request Brokers

The foundation for the changes in TOGAF is the basis

from which COTS/GOTS/legacy software is integrated and

interoperable. It consists of a hybrid of ORBs.

ORBs encapsulate the provided

integration/interoperation services to make them independent

of implementation details such as computing hardware,

operating system, programming language, and data

representation. ORBs must rely on the surveyed building

blocks to realize the services they provide. The difference

in using an ORB and using the building blocks directly is

that the application programs (such as those in C4ISR

systems) interact with standardized interfaces rather than

directly with the building blocks underneath those

interfaces. This decouples the applications from the

mechanisms used to realize the needed services, and makes it

much easier to take advantage of new approaches to realize

the building blocks as technology improves [Ref. 23].

A hybrid is recommended for this architectural

framework to enable the broadest application amongst the

various IT target architectures and systems. Any one target

architecture may choose to use a single ORB for their

application. However, for heteorogeneous systems, the ORBs

currently available in the commercial market today are not

61

yet mature enough to carry a wide product line to encompass

multiple platforms although they each are striving to run on

multiple platforms. The available ORBs on the marketplace

consist of Microsoft's COM/DCOM, Sun Microsystems's

Enterprise Java Beans and the Object Management Group's

(OMG) CORBA.

a) COM/DCOM

COM has its roots in OLE version 1, which was

created in 1991. It is a proprietary document integration

and management framework for the Microsoft Office suite.

Microsoft later realized that document integration is just a

special case of component integration. OLE version 2, was

later released in 1995 with a major enhancement over its

predecessor. The foundation of OLE version 2, now called

COM, provides a general-purpose mechanism for component

integration on Windows platforms. While this early version

of COM include some notions of distributed components, more

complete support for distribution became available with the

DCOM specifications and implementations for Windows95 and

Windows NT released in 1996. Beta versions of DCOM for Mac,

Solaris and other operating systems followed shortly after.

Microsoft's Distributed Component Object Model

(DCOM) is an extension of COM to support communication among

62

objects on different computers - on a LAN, a WAN, or the

Internet. It is based on The Open Group's DCE RPC

specification and will work with both Java applets and

ActiveX components through its use of COM. With DCOM, an

application can be distributed at locations that make the

most sense to the customer and to the application.

The DCOM protocol is an application-level protocol

for object-oriented remote procedure calls useful for

distributed, component-based systems of all types. It is a

generic protocol layered on the distributed computing

environment (DCE) RPC specification and facilitates the

construction of task-specific communication protocols

through features such as: a platform neutral

argument/parameter marshaling format (NDR), the ability for

objects to support multiple interfaces with a safe,

interface-level versioning scheme suited to independent

evolution by multiple parties, the ability to make

authenticated connections and to choose levels of channel

security, and a transport-neutral data representation for

references (including by-value) to objects.

With DCOM, the following issues are addressed

[Ref. 24]:

• Location independence

63

• Connection Management

• Scalability

• Performance

• Bandwidth and latency

• Security

• Load Balancing

• Fault tolerance

• Protocol neutrality

• Platform neutrality

• Seamless integration with other Internet
protocols

(1) Location Independence. When a

distributed application is implemented on a real network,

several conflicting design constraints must be considered:

• Components that interact more should be
''closer' together.

• Some components can only be run on specific
machines or at specific locations.

• Smaller components increase flexibility of
deployment, but they also increase network
traffic.

• Larger components reduce network traffic, but
they also reduce flexibility of deployment.

These critical design constraints can be overcome

with DCOM relatively easily because the details of

64

deployment are not specified in the source code. DCOM

completely hides the location of a component, whether it is

in the same process as the client or on a machine on the

other end of a network. In all cases, the way the client

connects to a component and calls the component's method is

identical. A simple reconfiguration changes the way

components connect to each other.

(2) Language Neutrality. As an

extension of COM, DCOM is completely language independent.

Virtually any language can be used to create COM components.

Language independence also enables rapid

prototyping: components can be first developed in a higher-

level language to show proof of concept and later re-

implemented in a different language that can better take

advantage of advanced features such as DCOM's free

threading, free multithreading and thread pooling.

(3) Connection Management. Network

connections are inherently more fragile than connections

internal to a machine. Components in a distributed

application need to be notified when a client is no longer

active. DCOM manages connections to components by

maintaining a reference count on each component. Each

65

connection to a component increments that component's

reference count. This is part of DCOM's distributed garbage

collection mechanism, which functions transparently to the

application.

DCOM uses a pinging protocol to detect

if clients are still active. Client machines send a

periodic message. DCOM considers the connection broken when

three consecutive ping periods pass without a response at

which point DCOM decrements the reference count and releases

the component when the count has reached zero. Whether the

connection breaks due to a catastrophic network or hardware

failure, or a client disconnecting, the same reference

counting mechanism is used.

(4) Scalability. It is important that

distributed applications have the ability to grow with the

number of users, the required functionality, and the amount

of data. DCOM provides a couple of features to enhance an

application's scalability:

• Symmetric Multiprocessing (SMP)

• Flexible Deployment

DCOM takes advantage of Windows NT

support for multiprocessing. For applications that use a

66

free-threading model, DCOM manages a thread pool for

incoming requests. On multiprocessor machines, this thread

pool is optimized to the number of available processors.

DCOM shields the developer from the details of thread

management and delivers the optimal performance that only

costly hand coding of a thread pool manager could provide.

Flexible deployment allows an

application to move to another machine as the load on one

machine increases. DCOM's location independence makes it

easy to redistribute components over other computers,

offering an easier and less expensive route to scalability.

DCOM's location independent programming

model makes it easy to change deployment schemes as the

application grows. Initially a single server machine can

host all the components. As the demand on the server grows,

other machines can be added, and the components can be

distributed among the machines without any code changes.

Applications also need to scale as new

features are added and other features modified. DCOM

provides a versioning scheme (described in COM section),

which allows clients to dynamically query the functionality

of a component. Instead of exposing its functionality as a

single, monolithic group of method and properties, a COM

component can appear differently to different clients. A

67

client that uses a certain feature needs access only to the

methods and properties it uses. Clients can also use more

than one feature of a component simultaneously. If other

features are added to the component, they do not affect an

older client that is not aware of them.

The initial component exposes a core set

of features as COM interfaces, on which every client can

rely on. As the component acquires new features, most of

the core features will still be necessary; new functions and

properties appear in additional interfaces without changing

the original interfaces at all. Old clients can still

access the core set of interfaces while new clients can

query for the presence of new interfaces and use them when

available, or they can gracefully degrade to the old

interfaces.

(5) Performance. With any new

technology, there are tradeoffs. Microsoft's DCOM provides

a standardized wire-protocol and programming model for the

developer so that application-specific custom protocols need

not be developed to interface with local and remote

applications. However, there is a performance degradation

when using DCOM (as high as 35% overhead for remote calls).

68

(6) Bandwidth and Latency. A common

problem in designing distributed applications is an

excessive number of network round trips between components

on different machines. On the Internet, each of these round

trips incurs a delay of approximately 1 second, often

significantly more.

DCOM reduces network roundtrips to avoid

the impact of network latency. A common technique for

reducing the number of network round trips is to bundle

multiple method calls into a single method invocation. DCOM

uses this technique extensively for tasks such as connecting

to an object or creating a new object and querying its

functionality. The disadvantage of this technique for

general components is that the programming model changes

significantly between the local and the remote case.

To reduce the number of network round

trips, DCOM also uses the connectionless UDP subset of the

TCP/IP protocol suite. This protocol allows DCOM to perform

several optimizations by merging many low-level acknowledge

packages with actual data and pinging messages. Advantages

with DCOM are also obtained when running over connection-

oriented protocols.

69

(7) Security. Using the network raises

new issues related to security between and among clients and

components. Since many operations are now physically

accessible by anyone with access to the network, access to

these operations has to be restricted at a higher level.

DCOM can make distributed applications

secure without any specific security-specific coding or

design in either the client or the component. Just as the

DCOM programming model hides a component's location, it also

hides the security requirements of a component. The same

binary code that works in a single-machine environment,

where security may not be a concern, can be used in a

distributed environment in a secure fashion.

DCOM achieves this security transparency

by letting developers and administrators configure the

security settings for each component. Just like the Windows

NT File System lets administrators set access control lists

(ACL) for files and directories, DCOM stores ACL for

components and the ACL can be configured using the DCOM

configuration tool.

The Windows 2000 will have a Kerberos-

based security provider allowing even more advanced security

controls like regulating what components can do while

impersonating clients. This security provider also requires

70

fewer resources for performing authentication than the

original Windows NT security provider-NTLM.

Windows 2000 will also include public-

key based security. The public-key security makes it

possible to decentralize the management of security

credentials with any Windows NT application, including DCOM

applications. Authentication with public keys is less

efficient than with private keys but it allows

authentication without storing the client's private

credentials.

(8) Load Balancing. As a distributed

application becomes more successful, the user demand

increases for all the components of the application.

Sometimes, even the fastest hardware is not enough to keep

up with the user demand. It is at this point that the load

must be redistributed among multiple machines.

One method of load balancing is to

permanently assign certain users to certain servers running

the same application. This method is called static load

balance because the load does not change with conditions on

the network or other factors. DCOM applications can use

static load balancing by simply changing a registry entry.

71

An alternative flexible approach is to

use a dedicated referral component, residing on a publicly-

known server machine. Client components connect first to

this component, requesting a reference to the service

required. The referral component can use DCOM's security

mechanisms to identify the requesting user and choose the

server depending on who is making the request. The referral

component can actually establish a connection to this server

and return it directly to the client. DCOM then

transparently connects the client directly to the server.

This mechanism can also be completely hidden from the client

by implementing a custom class factory in the referral

component.

.As user demand grows, administrators can

change the components to transparently choose different

servers for different users. Client components remain

entirely unchanged, and the application can migrate from a

model'whose administration is decentralized to a centrally

administered approach.

Static load balancing is a good

technique for dealing with growing user demand, but it

requires the intervention of an administrator and works well

only for predictable loads.

72

The referral component can be used to

provide more intelligent load balancing. Instead of just

basing the choice of server on the user ID, the referral

component can use information about server load, network

topology between client and available servers, and

statistics about past demands of a given user. With this

information, every time a client connects to a component,

the referral component can assign it to the most appropriate

server available at the moment. This method is called

dynamic load balancing.

DCOM does not provide support for

dynamic reconnection and distribution of method invocations,

since doing so requires an intimate knowledge of the

interaction between client and component. The component

typically retains some client-specific status information

(i.e. the state of the client) between method invocations.

If DCOM dynamically reconnected the client to a different

component, this information would be lost. However, DCOM

makes it easy for application developers to introduce this

logic explicitly into the protocol between client and

component.

(9) Fault Tolerance. Graceful fail-

over and fault tolerance are vital for mission critical

73

applications that require high availability. DCOM provides

basic support for fault tolerance at the protocol level

through the pinging mechanism described in the section,

Connection Management.

Also, with the referral component

described above, clients are able to reconnect to the same

referral component that established the first connection

when it detects a failure. The referral component retains

information about which servers are no longer available and

automatically provides the client with a new instance of the

component running on another machine.

(10) Protocol Neutrality. Many

distributed applications are integrated into a customer's

existing network infrastructure. If these applications

required a specific network protocol, all the client

applications would need to be upgraded. This would be

completely unacceptable. Developers of distributed

applications need to keep the application independent of the

underlying network infrastructure.

DCOM provides this abstraction

transparently. DCOM can use any transport protocol,

including TCP/IP, UDP, NetBIOS, and IPX/SPX. This feature

is especially attractive in the Defense community where

74

firewalls prevent certain protocols access. DCOM also

provides a security framework on all these protocols.

Developers are able to use these features of DCOM to remain

network protocol neutral.

(11) Platform Neutrality. The DCOM

architecture allows the integration of platform-neutral

development frameworks and virtual machine environments

(Java), as well as high-performance, platform-optimized

custom components into a single distributed application.

(12) Seamless Integration with Other

Internet Protocols. Distributed applications can take

advantage of the Internet in many different ways. Virtual

private networks such as the Window NT 4.0 Point-to-Point '

Tunneling Protocol (PPTP) are one way of using the network

to securely tunnel private information over the Internet.

DCOM applications will transparently leverage this

technology.

Since DCOM is an inherently secure

protocol, it can be used without being encapsulated in a

virtual private network. DCOM applications can use the

cheap, global TCP/IP network. Most dedicated server

machines are hidden behind a firewall that typically

75

consists of protocol level and application level filters.

DCOM is able to work with both classes of firewalls.

• DCOM uses a single port for initiating
connections and assigns a configurable range of
ports to the actual components running on a
machine.

• Application level proxies can easily be built.
They can be either generic (forwarding
configurable DCOM activation and method calls)
or application specific.

• Server administrators can also choose to tunnel
DCOM through HTTP, effectively bypassing most
of today's firewalls.

With this range of options, DCOM

applications can use the Internet for private connectivity

locally or with external clients anywhere in the world.

b) CORBA

CORBA is the first to bring ORBs to the

marketplace. CORBA is a set of specifications (not an

implementation)for the development of ORBS.

When the CORBA specification was first developed,

its focus was on interoperability. At this writing, the

CORBA 3 specification is getting ready to enter the

marketplace and it will take a while before we see ORBs that

are CORBA 3 compliant widely available in the marketplace.

16

The specifications follow Object Oriented Design

(00D) principles of encapsulation, inheritance, polymorphism

and instantiation.

Currently there are about 70 CORBA 2.0/2.1 ORBs

available in the marketplace.

The CORBA specification defines seven major ORB

components:

• Interface Definition Language (IDL).

• Interface Repository (IR).

• Implementation Repository.

• Dynamic Invocation Interface (DII).

• Static Invocation Interface (SII).

• Object adapters.

• ORB core.

IDL is a special language used by a developer to

describe object interfaces (operations names and parameter

names and types). It provides a programming language-

independent mechanism to define interfaces to objects.

The Interface Repository stores and manages object

interface information (a collection of object definitions

specified in IDL). The Implementation Repository stores and

manages object implementation information. Object

77

implementations may be hardware and ORB implementation

dependent.

The DII allows a client to dynamically invoke

operations on objects so that a client need not necessarily

be modified or recompiled as new objects or new operations

on existing objects are added to the system.

The SII allows clients to invoke operations on

objects using a subroutine call interface and stubs

generated by the IDL compiler.

Object adapters are used to invoke object

implementations and to generate and interpret object

references (unique identifiers for objects). The Basic

Object Adapter (BOA) is specified by OMG, but vendors may

provide additional object adapters to support different

object management mechanisms.

The ORB core is responsible for delivering a

request from a client to the appropriate object adapter for

the target object.

c) Entexrprise JAVA Beans

The Enterprise JavaBeans (EJB) Specification

defines a standard model for a Java application server that

supports complete portability.

78

The Enterprise JavaBeans component model logically

extends the JavaBeans component model to support server

components. Server components are reuseable, prepackaged

pieces of application functionality designed to run on an

application server and can be combined with other components

to create customized application systems. Server components

are similar to development components but they are generally

larger grained and more complete than development

components.

The EJB architecture provides an integrated

application framework that simplifies the process of

developing enterprise-class application systems. An EJB

server automatically manages a number of tricky middleware

services on behalf of the application components. Because

EJB component builders can concentrate on writing business

logic rather than complex middleware, the applications get

developed more rapidly and the code is of better quality.

The Enterprise JavaBeans architecture is

completely independent from any specific platform, protocol,

or middleware infrastructure. Applications that are

developed for one platform can be redeployed to another

platform. EJB applications can scale from a small single-

processor, Intel-based Novell environment to a large

multiprocessor, SUN UltraSPARC environment to an IBM

79

mainframe environment without any modification to the

applications.

JavaBeans component model is the platform-neutral

architecture for the Java application environment. It's

advantage lies in developing or assembling network-aware

solutions for heterogeneous hardware and operating system

environments—within the enterprise or across the Internet.

JavaBeans component architecture extends "Write

Once, Run Anywhere" capability to reusable component

development. In fact, the JavaBeans architecture takes

interoperability a major step forward—Java code runs on

every OS and also within any application environment.

JavaBeans architecture connects via bridges into other

component models such as ActiveX. Software components that

use JavaBeans APIs are thus portable to containers including

Internet Explorer, Visual Basic, Microsoft Word, Lotus

Notes, and others.

The JavaBeans API makes it possible to write

component software in the Java programming language.

Components are self-contained, reusable software units that

can be visually composed into composite components, applets,

applications, and servlets using visual application builder

tools.

80

JavaBean components are known as Beans.

Components expose their features (for example, public

methods and events) to builder tools for visual

manipulation. A Bean's features are exposed because feature

names adhere to specific design patterns. A "JavaBeans-

enabled" builder tool can then examine the Bean's patterns,

discern its features, and expose those features for visual

manipulation. A builder tool maintains Beans in a palette

or toolbox. A bean can be selected from the toolbox,

dropped into a form, it's appearance and behavior modified,

define its interaction with other Beans, and compose it and

other Beans into an applet, application, or new Bean. All

this can be done without writing a line of code.

The following list briefly describes key Bean

concepts,

• Builder tools discover a Bean's features (that
is, its properties, methods, and events) by
aprocess known as introspection. Beans support
introspection in two ways:

• By adhering to specific rules, known as
design patterns, when naming Bean
features. The java.beans.Introspector
class examines Beans for these design
patterns to discover Bean features. The
Introspector class relies on the core
reflection API. The Reflection API trail
is an excellent place to learn about
reflection.

81

• By explicity providing property, method,
and event information with a related Bean
Information class. A Bean information
class implements the Beanlnfo interface.
A Beanlnfo class explicitly lists those
Bean features that are to be exposed to
application builder tools.

• Properties are a Bean's appearance and behavior
characteristics that can be changed at design
time. Builder tools introspect on a Bean to
discover its properties, and expose those
properties for manipulation.

• Beans expose properties so they can be
customized at design time. Customization is
supported in two ways: By using property
editors, or by using more sophisticated Bean
customizers.

• Beans use events to communicate with other
Beans. A Bean that wants to receive events (a
listener Bean) registers its interest with the
Bean that fires the event (a source Bean).
Builder tools can examine a Bean and determine
which events that Bean can fire (send) and
which it can handle (receive).

• Persistence enables Beans to save and restore
their state. Once you've changed a Bean's
properties, you can save the state of the Bean
and restore that Bean at a later time, property
changes intact. JavaBeans uses Java Object
Serialization to support persistence.

• A Bean's methods are no different than Java
methods, and can be called from other Beans or
a scripting environment. By default all public
methods are exported.

2. Wrappers

Wrappers are software code developed to add, modify,

and hide functionality from a COTS, GOTS or legacy software

82

components to align them with the overall system

requirements and architecture. With this technique, an

interface is created around an existing piece of software,

providing a new view of the software to external systems,

objects, or users.

Wrapping can be accomplished at multiple levels: around

data, individual modules, software components, subsystems,

or entire systems. When access to code is provided,

wrappers are much more integrated and tightly coupled so

that one cannot even tell it's a wrapper whereas when

wrapping software components, subsystems or entire systems,

the wrapper functions as an interface. This interface can

be crude depending on accessibility of the system or

components (i.e. how open the system is and whether public

APIs are available.)

For legacy software code, object-oriented technology

(00T) can be used to wrap and encapsulate the legacy

software code. The narrow concept of a wrapped object is an

object with its methods surrounding the legacy software

representing its encapsulation as a single object.

00T is one of ' the better practices for software

development by virtue of its efficiencies in development and

maintenance and its inherent support for reuse. 00T

consists of a set of methodologies and tools for developing

83

and maintaining software systems using software objects

composed of encapsulated data and operations as the central

paradigm. The legacy software code is accessible only

through the object-defined methods (or operations). Any

user access to the legacy software would be mediated through

some of these methods, whether the user interface is a

complex set of objects constituting a graphical user

interface (GUI) or simple terminal line command input/output

(I/O).

The broader concept of an 00 wrapper is an object model

consisting of multiple classes and objects. This object

model is created as part of the wrapper to provide a natural

00 interface to the principal conceptual entities implicit

in the original system. The new objects and classes of such

a wrapper can interface with the legacy programs and data in

different ways. An application programming interface (API)

may mediate communication between the wrapper object model

and the legacy program. When the legacy software is a

database, a database server might provide the functionality

of an API, with objects accessing the database through SQL

calls to the server.

When' multiple COTS/GOTS software components are used in

a system, two of the components may provide duplicate

functionality. The functionality in both components would

84

have to be evaluated and it may be decided that one is

superior to the other. In this case, the weaker component's

functionality may be hidden with the use of a wrapper. In

another instance, a COTS software component may have been

selected to fulfill some specific functionality of the

overall system but one small feature may also be needed. In

this situation, a wrapper can be written to add this

feature. This is especially useful when the COTS software

component supports a set of application program interfaces

(APIs).

3. Glue Code

Glue code, as applied in this architectural framework,

is a tool to aid system developers to integrate software

components by creating a bridge between two or more software

components, which otherwise would not communicate with each

other. The term, glue code, was coined with the onset of

the use of COTS in software development but can be used with

GOTS and legacy software that needs to communicate together

in a system. The bridge can be as simple as a data

translation between two applications where the two

applications are expecting the data in two different

formats.

In the situation where the target architecture supports

a set of APIs for a given system, glue code provides the

85

capability for a COTS/GOTS software component to interface

with other system components using these APIs. Using the

APIs provided by the system helps to ensure the system

architecture is adhered to.

Sometimes two COTS components may accept the same data

in the same format but there is no means of passing this

data from one application to another since they are not

designed to communicate with each other. In this case, the

glue code provides the communication path between the two

applications.

4. XML

To attain interoperability in a distributed,

heterogeneous system, consistent interpretation of data

between the various applications on the different platforms

is key. Sharing different formatted data requires a common

representation of data to interpret, send, and receive any

data, any format, anywhere.

XML is the new data interchange format approved by the

World Wide Web Consortium (W3C) [Ref. 25], an independent

organization at http://www.w3.org that develops protocols

for interoperability on the web. Platform and vendor

independent, XML provides lightweight, flexible, self-

describing text in the form of tags that may be used in

concert with JAVA, in any system, document, or database.

86

XML format can handle data, data structures and the

description of data (metadata).

XML solves the data interoperability problem by-

providing self-describing tags along with the data so that

the receiving applications can consistently interpret the

data correctly. These self-describing tags are detailed in

the Document Type Definition (DTD).

Another source of XML's unifying strength is its

reliance on a new standard called Unicode, a

character-encoding system that supports intermingling of

text in all the world's major languages. In HTML, as in

most word processors, a document is generally in one

particular language, whether that be English or Japanese or

Arabic. If your software cannot read the

characters of that language, then you cannot use the

document. The situation can be even worse: software made

for use in Taiwan often cannot read mainland-Chinese texts

because of incompatible encodings. But software that reads

XML properly can deal with any combination of any of these

character sets. Thus, XML enables exchange of information

not only between different computer systems but also across

national and cultural boundaries.

It lays down ground rules that clear away a layer of

programming details so that people with similar interests

87

can concentrate on the hard part—agreeing on how they want

to represent the information they commonly

exchange. This is not an easy problem to solve, but it is

not a new one, either.

Such agreements will be made, because the proliferation

of incompatible computer systems has imposed delays, costs

and confusion on nearly every area of human activity. People

want to share ideas and do business without all having to

use the same computers; activity-specific interchange

languages go a long way toward making that possible.

88

V. NITES CASE STUDY

A. NITES

The Naval Integrated Tactical Environmental System

(NITES) is a DoD system, representative of systems in the

Automated Information System (AIS) arena, which must

interoperate with other Command and Control, Communications

and Computers, and Intelligence, Surveillance, and

Reconnaissance (C4ISR) systems.

1. NITES Background

NITES is the 4th generation evolutionary upgrade to the

original Tactical Environmental Support System (TESS).

NITES provides tactical Meteorological and Oceanographic

(METOC) support to Navy and Marine Corp forces engaged in

worldwide operations, ashore and afloat. Though NITES is

able to operate independently, the prime mode of operations

is through interoperability with C4ISR systems. Sharing of

information between METOC and C4ISR systems is critical to

achieving total situational awareness by METOC personnel and

tactical operators.

NITES provides a METOC database containing

climatological data, in-situ environmental data, regional

observations, forecasts and warnings, and numerical METOC

forecast models. NITES provides the operator with the

89

capability to produce METOC assessments and forecasts, and

METOC product generation applications to support weather

briefings that display METOC information to the tactical

decision maker; and interfaces to co-located METOC sensor

systems. NITES integrates METOC data and products with

combatant sensor data, weapon system and platform

parameters, and available intelligence to provide tailored

tactical products to C4ISR systems.

The basic NITES missions are:

• to store observed and forecast METOC information
relevant to ongoing operations.

•

•

to assess the impacts of present and forecast METOC
conditions on operations.

to provide METOC data to planning and decision
support systems.

2. Existing NITES Architecture

The NITES architecture (figure 2) decouples the

application from the data enabling true modularity where one

application can be removed/replaced without requiring a

total redesign of the system. This is especially crucial

when using COTS products where there is no control of future

COTS updates.

COTS products are designed to run standalone thus they

have a tendency to maintain their own data and their own

90

database. In systems using multiple COTS products, the

nature of COTS hinders true system integration. Unless a

system architecture uses a single database and decouples the

application from the data, redundant databases must be

maintained, data files are duplicated, and no value-added

products are shared between applications.

Forecaster
Applications

Network
Communications Database

Serial
Communications

Tactical
Applications

Figure 2 - NITES Architecture

This architecture also facilitates the requirement for

having a central repository for all METOC data. This

central repository enables internal and external users to

only go to one place for its data. By having a central

repository, this architecture also enables the forecaster to

control what data entered and left the system. Because the

system receives an immense amount of data from a variety of

sources and at times may receive the same data from

91

different sources with conflicting information, the

forecaster is responsible for ensuring the data distributed

to external users and/or systems is accurate. Maintaining a

single database greatly eases the forecaster's job.

3. Data vs. Product

In the NITES program, the term, data, is distinguished

from the term, product. Data refers to the raw information

received. Products refer to finished products the

aerographer may create. These are usually image products.

For example, the observation and gridded data can be either

contoured or plotted on a map background, creating a

product.

B. CASE STUDY

The NITES system, in its current implementation,

drastically deviates from the envisioned system

architecture. This case study uses the NITES system to

demonstrate the use of the recommended features of the

proposed architectural framework to build systems using

COTS/GOTS/legacy components. With the proposed

architectural framework, this case study will demonstrate

the building of the existing NITES architecture using TOGAF

terms. In addition, a portion of NITES will be modified to

92

demonstrate the feasibility of using the proposed tools in

the new architectural framework.

1. Definition of Existing Environment in Existing
Terms

NITES can be viewed as several subsystems:

Communications, METOC Application, Tactical Environmental

Data Server(TEDS), RAID Storage, NITES Workstations, and

Briefing Display. In the existing system, none of the

products created on the NITES Workstations are stored back

to the TEDS database. The functional view of the NITES

architecture is shown in figure 3.

Briefing
Display-

Communications
Subsystem RAID

Storage
Subsystem

TEDS
Subsystem

METOC
Application
Subsystem

NITES
Workstation
Subsystem

Figure 3 - Functional View of Existing NITES Environment

The Communications Subsystem is the primary entry point

for all METOC data coming into NITES.

93

The RAID Storage Subsystem provides for the storage of

METOC data on multiple RAID storage devices. These storage

devices are mirrored to provide redundancy.

The TEDS Subsystem is the METOC database for the NITES

system.

The METOC application subsystem is the application

server consisting of the forecaster applications and tools

to manipulate the METOC data.

The NITES Workstations run the client application,

providing the ability to view and manipulate the METOC data,

and create METOC products for briefing purposes.

The Briefing Display consists of an interface to the

ship's CCTV via an Appian Graphics video card. Through the

video card, the brief products are transmitted throughout

the ship's CCTV system for display.

The topology of the existing NITES is shown in figure

4.

94

RAID

Briefing
Display

Communications

TEDS
Server METOC

Application
Server

Network

Scanner

VJ -Z
Workstations

Color
Printer

Figure 4 - Existing Hardware Topology

2. Lessons Learned From The Existing System

The main lesson learned from the existing NITES system

is that the forecaster application needs to be more user

friendly, reguiring less operator intervention and more

automation capability for routine tasks. Also, the

implemented system did not adhere to the original design

architecture which prevented the data/products from being

95

optimally shared. These lessons learned will be addressed

further in this case study.

3. Market Survey

The NITES project was tasked to transition from a

monolithic system with organically generated source code on

a Unix platform to a COTS/GOTS system on a Windows NT

platform. The key functionally for the new system would be

a Forecaster tool that displays and manipulates METOC data,

and enables the operator to annotate and enhance displays

for effective presentations.

A market survey of Forecaster applications was

conducted as the first step in determining the system

architecture for the new system. The survey was based on

the following high-level system requirements:

• The Forecaster Application must run on a PC.

• The Forecaster Application must run on the Windows NT
operating system. ■

• The Forecaster Application must have the capability to
receive and process standard METOC data including:

• Model Grids

• WMO encoded observations (ship, surface, synoptic,
upper air, bathythermograph, salinity profile,)

• Forecasts

• Warnings

• Satellite imagery

96

The initial phase consisted of a preliminary

engineering analysis to identify the qualifying applications

for further evaluation. This phase consisted of an

evaluation of the high level qualifications. Of the over 20

responses to the request for information submitted on the

Commerce Business Daily (CBD), five applications (3 COTS and

2 GOTS) met all the high-level requirements and were

selected for further analysis. Due to the proprietary

nature of this process, neither the vendor nor the

applications are identified here.

4. COTS/GOTS Evaluation and Selection

The five Forecaster applications selected proceeded to

the second phase, which is the evaluation phase. The

evaluation process consisted of three major categories 1)

user evaluation 2) engineering analysis and 3)

administrative analysis.

The user evaluation consisted of a vendor demonstration

of each of the five qualifying applications. This phase

consisted of an in-depth demonstration of each qualified

application at the vendor's facility by a team of "user

experts'. The expert team consisted of Navy personnel from

both East and West Coast ships and shore facilities that

have had extensive experience as Navy Forecasters. In this

phase, the evaluation consisted of a demonstration of

97

features and capabilities by the vendor using a set of

canned data. The primary objective of these demonstrations

was to allow the vendor to demonstrate their application and

show the expert team how well their application meets the

high-level requirements as well as demonstrate the detailed

capabilities of the system. It also allowed the user

experts to see the application run for the first time.

The preliminary engineering analysis consisted of a

technical survey of the vendor's product. The analysis was

performed by having the 5 vendors fill out sections A

through C, and G of the COTS Evaluation/Selection form

enclosed in appendix A. Based on the vendors' responses, a

preliminary rating of each of the five vendors was

generated. The vendor responses are proprietary and cannot

be shown here. However, a brief summary of the results are

shown in table 3.

98

Vendor 1 2 3 4 5
A. System Req. Sat Sat Sat Sat Sat

B. Documentation 3.5 3.5 4 3 3.5

Operator 4-Good 3-Adequate 4-Good 3-Adequate 4-Good

Installation 3-Adequate 4-Good 4-Good 3-Adequate 3-Adequate

Maintenance N/A N/A N/A N/A N/A

C. Integration 1.3 2.6 2 1.3 1

Data Ingest 0-
Proprietary
ingest

5-Fully
compatible
w/ Navy
data

3-Takes all
Navy data
but
requires
specific
dir
structure

2-Does not
handle
ocean data

1-Very
limited
data types

Data/Product
Export

4-Good
Product
export

3-Meets all
major
export
requirement
s

3-Meets all
major
export
requirement
s

2-limited
due to lack
of ocean
data

2-limited
due to lack
of data

APIs 0 0 0 0 0

G.
Supportability

4 3.5 3.5 3 2.5

Vendor Maturity 5 2 3 2 2

Product Maturity 5 4 3 3 2

Customer Support 4 3 4 3 3

Maintenance Cost 2 5 4 4 3

Table 3 - COTS/GOTS Phase 2 Evaluation Results

The Administrative analysis consisted of programmatic

considerations including overall costs of the product, and

contract availability. This analysis contributed to the

rating of each of the five vendors and did not specifically

eliminate any vendor. Preference was given to those vendors

99

who are on the General Schedule Administration and Small

Business Administration. All COTS vendors had an existing

contract vehicle so this did not become a problem.

The user evaluation in conjunction with the preliminary

engineering analysis resulted in the selection of three

applications (2 COTS applications and 1 GOTS application).

In the third phase, the final three applications were

evaluated at a Navy lab under near live conditions on Navy

hardware with live data feeds and displays. This phase

consisted of a detailed engineering analysis on

compatibility and interoperability. This phase also

conducted another user evaluation in a typical user

environment using the following detailed list of

requirements.

• The Forecaster Application must have the capability to
receive, process and display standard METOC data
including:

• Model Grids

• Retrieve grid within 30 seconds for display.

• Contour at standard intervals based on level of
data.

• Display streamlines for wind data.

• Display wind barbs.

• Display multiple grid forecasts in looping
sequence.

• WMO encoded observations (ship, surface, synoptic,
upper air, bathythermograph, salinity profile,)

• Retrieve observation within 30 seconds for display
on a geographic background.

100

• Display standard METOC Station plots.

• Overlay plots on satellite imagery.

• Overlay plots on grid contours.

• Display Skew-T/Log P plot of upper air data.

• Display BT plot of bathythermograph and salinity
profile data.

• Display meteogram (time series) plot of surface
observations.

• Display cross-sections.

• Forecasts

• Display text message for reading and editing.

• Warnings

• Display text message for reading and editing.

• Plot area of warning on geographical display.

• Satellite imagery

• Retrieve and display satellite imagery on a
geographic background within 60 seconds.

• Perform gray scale enhancements on satellite image
data.

• Operator controlled transparency over geographic
display.

• Display satellite loops.

• Briefing Capability

• All the above products must be capable of being
saved and imported into a briefing package for
presentation.

In addition the applications were rated on subjective

usability issues (quality of display, ease of use, enhanced

functionally) . A summary of the results of this evaluation

are provided in table 4.

The engineering analysis consisted of evaluating the

compatibility and interoperability of each of the three

101

applications by loading the application on the target Navy

platform and analyzing its ability to work within the target

system's operating environment:

• loads and runs on target system within sizing & timing
limitations,

• operates simultaneously with other applications without
interference,

• utilizes existing communication channels and data
files,

• utilizes and shares system devices (printers, CDs, tape
drives, displays),

• uses/converts to standard data formats and data units
from available sources,

• exports data in compatible formats and units with other
applications and external systems that utilize the
data.

The results of all the evaluations were presented to

the program manager who reviewed the evaluation. A

selection was made using the relative rankings of both the

user and engineering analysis. In summary Application 1 had

the highest overall technical rating but was eliminated due

to its high cost which resulted in the selection of

Application 2, the second highest rated application.

102

Criteria
9> 0.

an
< Comments

Model Grids App 3 has no streamline
capability

Mean time to retrieve & display (single
data type)

5s 7s 5s

Contour Surf Pressure V V V
Contour Surf Air Temperature V V V App 3 default intervals

incorrect, took operator action
to correct.

Plot Surf Wind Barb (from U & V) V V V
Plot Surf Wind Barb (from speed &
direction)

V V V
Display Surf Wind as streamlines (from
U & V)

V V
Display Surf Wind as streamlines (from
speed & direction)

V V
Display Surf Anal (all of above) on a
map background

V V <

Loop Surf Anal for 12, 24, 36, 48 hr
forecast

V V V App 1 s 3 have automatic update
capability

Contour 1000MB HT V V V
Contour 1000MB Temperature V V V
Plot 1000MB Wind Barb (from U & V) V V V
Plot 1000MB Wind Barb (from speed &
direction)

V V V
Display 1000MB Wind as streamlines
(from U & V)

V V
Display 1000MB Wind as streamlines
(from speed & direction)

V V
Contour 850MB HT V V V
Contour 850MB Temperature V V V
Plot 850MB Wind Barb (from U & V) V V V
Plot 850MB Wind Barb (from speed &
direction)

V V V
Display 850MB Wind as streamlines (from
U & V)

V V
Display 850MB Wind as streamlines (from
speed & direction)

V V
Contour 500MB HT V V V
Contour 500MB Temperature V V V
Plot 500MB Wind Barb (from U & V) V V V
Plot 500MB Wind Barb (from speed s
direction)

V V V
Display 500MB Wind as streamlines (from
U & V)

V V
Display 500MB Wind as streamlines (from
speed S direction)

V V
Contour Total 12 hr Precipitation V V V
Contour Frontal Analysis V V V
Contour Total Cloud Cover V V V
Contour Fog V V V

103

Contour Sea Water Temperature V V V
Display Wind Wave as streamlines V V
Display Primary Wave as streamlines V V
Display Swell Wave as streamlines V V

WMO encoded Observations, Ship £
Surface
Mean time to retrieve & display
(station model plot)

2s 3s App 2 does not do standard
station model plot

Station model plots (six selectable
parameters w/wind barbs)

V V
Contour Surf Pressure V V V
Contour Surf Air Temperature V V V
Time series of METOC variables
at selected points

V Apps 2 & 3 do not do time
series plots

WMO encoded Observations, Upper Air
Calculate & Display Skew-T/Log P plot V V V
Contour 500MB HT V V V
Contour 500MB Temperature V V V
WMO encoded Observations,
Bathythrmograph & Salinity
Display BT plot of bathythermograph and
salinity profile data.

V V V Apps do not handle salinity
profile data

Display BT cross-section V V V
Calculate & Display Sound Speed Profile Apps do not calculate SSP

Text Message Forecast & Warnings

Mean time to retrieve & display (single
message)

Is Is Is

Display text message V V V App3 awkward display
Message edit V V App 2 has no message edit

capability
Message search V V V Appl limited
Message delete V V V
Message create Apps do not create message
Draw area of warning on geographical
display

V Apps 2 & 3 do not draw area of
warning

Satellite
Mean time to retrieve & display (single
satellite pass)

8s 9s 8s

Display DMSP vis V V V
Display DMSP IR V V V
Display NOAA Ch 1 V V V
Display NOAA Ch 2 V V V
Display NOAA Ch 3 V V V
Display NOAA Ch 4 V V V
Display NOAA Ch 5 V V V
Satellite gray scale enhancements V V V
Display GOES WEFAX V V V
Operator controlled transparency over
geographic display

V V
Display satellite loops V V V Apps 1 & 3 have automatic

update of loops
Annotations & Enhancements App 1 had superior display

capabilities

104

Add Text V V V
Draw lines curves & areas V V A/
Draw standard weather boundaries V V V
Add standard weather symbols V V V
Modify text, lines, & symbol size,
color, and orientation

V V V

Display up to 5 layers of variables on
a plan view map including satellite

V V V

Display 3-D contours of METOC
variables

V Apps 2 S 3 do not do 3-D
contour

Automatic product generation V

Usability
Operator actions required to setup,
operate, and perform tasks are
reasonable and intuitive with useful
displays and procedures

V V V App 1 easiest to run due to
automation. Apps 2 and 3
require more operator
interaction.

Quality of displays V V V App 1 had superior display
capability

Other features & enhancements V V V App 1 had best set of features
and enhancements

Table 4 - COTS/GOTS Phase 3 Evaluation Results

5. Restatement of Existing Environment in TOGAF Terms

The existing NITES environment follows a distributed

computing architectural model. A client NITES application

on a workstation communicates with the server application on

the METOC Applications Server. The Communications

application parses data as it comes in and passes it to the

decoder application on the METOC Application Server. The

decoders decode the data, transfer it to the TEDS Server

where it is entered into the RAIDS for permanent storage.

The general diagram for the NITES distributed computing

model is shown in the following figure:

105

Client Application
Briefing Display
Communications

API

Application Platform
Data Interchange
Graphics and Imaging
Operating System
User Interface

EEI

Server Application
TEDS
RAID Storage
Applications

API

Application Platform
Data Interchange
Data Management
Operating System
User Interface

EEI

External Environment
Ethernet 1 1

Communication Mechanism
TCP/IP

Figure 5 - NITES Distributed Computing Architecture

The existing environment can be restated in TOGAF terms

using the following table that maps the existing NITES

components into the standard application platform services:

Communi-
cations

Briefing TEDS Application RAID
Storage

Workstation

Data Interchange X

Data Management X X
Graphics and

Imaging
X X X

Network X X X X X X

Operating System X X X X X X

Software
Engineering
Transaction
Processing

X

User Interface X X X

Table 5 - Mapping of Services to Existing Architecture

106

The standard application platform services provided in

NITES perform the following functions:

• Data Interchange - Data entering the system and leaving
the system are in one of two formats, either WMO or XML.
Products created on the system are in standard graphics
formats, i.e. BMP, JPEG, TIFF. All data and products on
the NITES system can be sent to common data output
devices like printers and CRT screens.

• Data Management - These services are satisfied by the
INFORMIX RDBMS, which resides a layer below TEDS.

• Graphics and Imaging - Scanners and compression software
services are used by the NITES system. Drawing services
are used by each of the NITES workstations.

• Network - All of the components in NITES use the
functions provided by the TCP/IP protocol stack working
over an Ethernet network.

• Operating System - The Operating System Services are
found on all of the NITES subsystems.

Software Engineering - Although programming language
compilers and GUI builders are used to develop NITES, no
Software Engineering Services map into existing NITES
subsystems.

Transaction Processing - The Informix RDBMS used by TEDS
provides these services.

User Interface - These functions are provided at the
Communications Subsystem, TEDS Subsystem, and at the
NITES workstations.

107

6. Views, Constraints and External Environments

a) Operations View

In the Operations view, the key operational aspect

of the system is to store observed and forecast METOC

information relevant to ongoing operations, and to create

and manipulate the data and products to assess the impacts

of present and forecast METOC conditions on operations.

Products consist of horizontal weather depictions (HWDs),

satellite image briefs, and outputs from tactical decision

aids.

b) Management View

The management view of the system is dependent

upon the role a user plays in the system. This view

partitions the users of the system into the following

profiles:

• Database Administrator - controls access to the
METOC Database.

• System Administrator - controls the operation
of the system (installation, system shutdown)
and assigns privileges to METOC users.

• METOC Users - creates, views, manipulates, and
prints data and products on the system.

108

c) Security

The security view (figure 6) for NITES has one

type of security mechanism - access control. Each user has

a unique user ID, password and group that allows him access

to any of the Graphics Display Workstations and all output

devices (i.e. printers and scanners). The group determines

level of access, database, system administrator, or METOC

user.,

Users

! Security
j Layer User ID

Password
Group

Figure 6 - NITES Security View

d) Constraints

One of the major constraints of the system is the

database application suite. This database was developed

prior to NITES and independent of the system but, because it

represents a significant investment, it must be retained.

The system is also constrained due to a decision

made during the development process. In the fielded NITES

configuration, the implementation fails to adhere to the

system architecture. During the development, a decision was

made to forfeit the architecture to meet the system

109

schedule. The COTS forecaster applications do not

communicate with the database. Instead, data is distributed

straight to the applications directly from the

communications feeds. Value added products created by the

forecasters using the COTS applications are manually pushed

to the briefing utility to be incorporated into existing

briefs. All this is handled independent of the database,

violating the original system architecture where all

communications are supposed to go through the database and

preventing a sharing of value added data and products

between applications.

External systems communicate with the NITES using

the published database APIs to extract the data it needs for

its application. Without the capability for the forecaster

to store his value added data into the database, the

external systems extracting data from the database is not

using the data the forecaster intends for them to use since

that data is not in the database.

e) External Environments

The network used at each NITES site is part of the

local environment and, as such, the existing NITES coexists

with other networked systems. The new target architecture

will also be required to fit into existing external

110

environments without disruption of the site's other

missions.

7. Target Architecture

The target architecture for the new NITES software

follows the goals and requirements outlined in the Software

Requirements Specification outlined in Appendix B. The

NITES program has an existing performance specification used

to build the 4th generation system, which we also used for

this case study. The SRS written for this case study lists

requirements above and beyond those in the NITES Performance

Specification to satisfy the architectural requirements.

The NITES currently consists of COTS, GOTS, newly

developed source code, and legacy software residing on NT

and UNIX platforms, all of which must interact together in a

seamless fashion to enable the user (aerographer) to

analyze, create and brief METOC products.

This case study prototypes a portion of the NITES

system to redesign it to adhere to the original system

architecture. The main goal was to bring the system back to

conform to the original system architecture consisting of a

central database residing on a UNIX computer, which is

shared amongst the various NITES components as depicted in

figure 7. In this topology, there is no direct interaction

111

between the components. All interactions are through the

central database. This topology allows ease of integration

of COTS components as it minimizes the integration effort as

each component only has one interconnection.

Forecaster
Applications

Network
Communications

Database

Tactical
Applications

Serial
Communications

Briefing
Utility

Figure 7 - NITES Functional Architecture

The Rational Rose tool is used to document the design.

The Universal Modeling Language (UML) is used to describe

the design as shown in the Software Design Specification in

Appendix C.

In order for the COTS, GOTS and legacy components to

interact seamlessly, wrappers and glue code are implemented.

Wrappers are used to add/hide functionality of the COTS,

GOTS and legacy software where access to source code is not

available. Specifically for this prototype, a wrapper is

112

written to add functionality to the COTS briefing

application to automatically update a brief as new data

comes into the system and is stored in the database. [Refs.

26, 27]

The NITES database supports a set of public APIs. The

glue code written for this prototype connects to the NITES

database, retrieves data from the database using the APIs

and, feeds the products and enhanced data to the database

APIs to store back to the database.

Slides for the briefing package are generated by the

operator using an external COTS/GOTS application. As each

of these slides is generated, it is saved to a directory by

the COTS/GOTS application. The system monitor polls the

directory and when a file is found, notifies the controller.

When the controller receives notification from the

monitor that a new file exists, the controller will create

an instance of the glue component, which will connect to the

database and store the file.

Once the products are stored in the database, the

briefing utility (Microsoft Powerpoint) needs to extract

this data to incorporate into a brief. Using the APIs

provided with the Microsoft products, a wrapper was written

to interface the Microsoft APIs with the database APIs to

extract the data from the database and automatically

113

populate the brief. The full source code is provided in

Appendix D.

8. Constraints of Case Study

Limitations of this case study include budget and

schedule. The NITES project is evolutionary and the first

evolution took many engineers and developers over 2.5 years

to build the system. The team in this case study consists

of 4 people and we had a 6 month schedule. Cost for this is

out of pocket so we borrowed almost everything we needed.

In order to get the best performance out of the ORB, an

evaluation process would have needed to be conducted to

select the ORB best suited for our purposes. Because we are

constrained by schedule and costs, we are not able to obtain

the best ORBs, etc. so in certain areas, the performance is

sacrificed to demonstrate the utility.

114

VI. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

An architectural framework is critical in the

development of a target architecture. With DoD's mandate to

incorporate COTS in system architectures, existing

architectural frameworks do not sufficiently address the

development of target architectures using COTS.

This thesis proposes an architectural framework, which

addresses heteorogeneous, interoperable systems built upon

COTS/GOTS/Legacy components. The proposed architectural

framework incorporates a methodology for integrating COTS

components into a system architecture as well as provide the

tools necessary to build interoperable systems using

COTS/GOTS/Legacy components. These tools include ORBs,

wrapper and glue code technology, and XML.

The methodology provides a structured approach for

integrating COTS components into a system architecture. It

includes a market survey, the evaluation and selection of

COTS components, and identifies interface and

interoperability characteristics and deficiencies. This

methodology enables the system developer to successfully

design a target architecture and head off problems early in

the system development using COTS/GOTS/Legacy components.

115

The tools in the proposed architectural framework

enables a system developer to integrate standalone COTS

applications into a cohesive, integrated system where

software components interoperate and share data.

B. RECOMMENDATIONS

Conduct a study of the existing CORBA ORBs to evaluate

the features and what percentage supports COM/DCOM and EJB.

Publish this information so that users can more easily

select between the different ORBs on the market.

The wrapper and glue code technologies have been widely

discussed but need to be formalized into a specification

that can be used as guidance for integrating

COTS/GOTS/legacy components.

The separation of data and application in an

architecture is very important in creating an integrated,

heteorogeneous system using COTS/GOTS/legacy components.

This was lightly touched upon in this thesis but could be

expanded upon. Separating the data from the application

introduces interoperability issues. Data and its meaning

and interpretation between various COTS, GOTS, and legacy

applications is an important factor to interoperability and

a solution should be further explored.

116

APPENDIX A. SAMPLE COTS/GOTS SELECTION/EVALUATION FORM

117

,Sl#ä£-Z: _

rCOTS/GOT!^!Selectioin/E^I^^F6raÄ

Name of COTS/GOTS Package

Target system Platform

Initial Cost Multiple License cost

A. System Requirements ^^^'YQ'^ -r^'::/:J::::\ .\ . "; ~i-''- .■.V'.'ib'"^-'^""'1'"^- ••
Operating System(s) CPU

RAM Disk Storage

I/O Device(s) Video Resolution

■ B.'''Documentätioh"^V~^;^^^^ - ::-;-:"'-" •■:-

Document Title Type Rating Cost

Type - Indicate document type (Operator, installation, maintenance, etc.)
Rating - Scale from 1 to 5 where l=poor 3=adequate 5=excellent
Cost - Enter Unit cost per license

118

C. Integration -^^MM

Data Requirements of COTS Application

Data Type Format units Exchange Method1

Data/Product Export

Data Type Format units Exchange Method1

Supported Application Program Interfaces (API)

API Functional Description

1. API, Directory/File, Proprietary database call, Communication channel

119

D. Interoperability

Evaluate the COTS application's ability to exchange/share data within the target system and with external systems, including required
operator support and control

120

E. Requirements ? ^C^^v:^ '>~K '.--'■'.-

Requirement Rating1 Evaluation
Method2 Comments

'

Use additional sheets as required

1. 0 to 5 where
0= not satisfied
1-2 = poorly satisfied (below threshold for quantitative measurement)
3 = Adequate (meets threshold for quantitative measurement)
4-5 = Superior (exceeds threshold for quantitative measurement)
Enter value for quantitative measurement in comment field

2. Independent = independently tested on target system
Lab = independently tested on non-target system
Demo = observed on demonstration system
Vendor = vendor verified
Documentation = stated in vendor documentation

121

F. Usability £--«*3
Evaluate operator actions required to setup, operate, and utilize COTS data/products. Are procedures reasonable and intuitive with
useful displays?

G. Supportability

Vendor Maturity (Years in field, Size of Company, Market dominance, Competitors):

Product Maturity (How long has the COTS/GOTS package been in the market? What is the market share?):

Customer Support (Will the vendor support trouble calls? How responsive is vendor in providing resolution?):

Update/ Maintenance Cost (update cycle & cost per platform):

122

APPENDIX B. SOFTWARE REQUIREMENTS SPECIFICATION (SRS) FOR AN
ARCHITECTURAL FRAMEWORK OF COTS/GOTS/LEGACY SYSTEM

123

COTS/LEGACY ARCHITECTURAL FRAMEWORK SRS 06/28/00

Software Requirements Specification

For An

Architectural Framework

Of
DoD COTS/GOTS/Legacy System

124

COTS/LEGACY ARCHITECTURAL FRAMEWORK SRS 06/28/00

1. SCOPE

1.1 Introduction

The trend towards using Commercial Off-The-Shelf (COTS) software within Department
of Defense (DoD) has become the accepted way to build systems. Twenty years ago,
almost all DoD software-intensive systems were built by awarding large multimillion-
dollar contracts to defense contractors to build these systems from scratch. In the 90's,
with a constantly dwindling budget, the focus has shifted to building software-intensive
systems by integrating COTS software components.

Building software systems from COTS components is quite different. The black box
nature of the COTS software components along with the uncontrollable evolution process
requires a different architectural approach in developing systems with COTS.

1.2 Purpose

The purpose of this requirements specification is to analyze and document the
requirements in developing an architectural framework for COTS/GOTS/Legacy systems
within the DoD. To focus the requirements of the architectural framework, a DoD
Meteorological and Oceanographic (METOC) system, the Naval Integrated Tactical
Environmental System I (NITES I), which is very representative of today's DoD
COTS/GOTS/Legacy systems, will be used.

1.3 Background

The NITES I project is a Space and Naval Warfare (SPAWAR) sponsored project within
DoD. Like most other projects within DoD, the NITES I project is being developed in an
environment that emphasizes the use of personal computers and COTS components.

NITES I acquires and assimilates various METOC data for use by US Navy and Marine
Corps forecasters. The purpose of NITES I is to provide the METOC community (Users)
with the tools necessary to support the warfighter (Customers).

The NITES I is the primary METOC data fusion platform and principal METOC analysis
workstation, intended to be operated on both a classified and unclassified network
environment by METOC personnel. This system receives, processes, stores and
disseminates METOC data and provides analysis tools to render products for application
to military and tactical operations. NITES I data and information/products are stored in a
unified METOC database on the C4ISR network and available to local and remote
planners and warfighters.

1.4 References

Performance Specification (PS) for the Tactical Environmental Support System / Next
Century TESS(NC) (AN/UMK-3) (NITES version I and II)

Security Guidelines for Space and Naval Warfare Systems Command (SPAWAR)
Program Software Developers (DRAFT), October 1999.

125

COTS/LEGACY ARCHITECTURAL FRAMEWORK SRS 06/28/00

Horizontal Integration: Windows NT Developer's Guidelines (DRAFT), Version 0.1.

2 GENERAL DESCRIPTION

2.1 Architecture Goals

Integration

COTS/GOTS/legacy components are usually created as standalone products. When these
components are targeted for integration into a system, the architecture shall provide
seamless integration of these COTS/GOTS/legacy components.

The architecture shall support middleware approaches to bind data, information and
COTS/GOTS/legacy components.

Because evolution and upgrade of COTS/GOTS components are outside the control of
the system integrators, the architecture of the COTS/GOTS/legacy system shall have an
adaptable component configuration to reduce the effort of testing and reintegration when
upgrades or new COTS/GOTS packages are introduced to the system.

Interoperability

COTS/GOTS and legacy systems reside on multiple platforms. This architecture shall
address distributed, heterogeneous systems consisting of both UNIX and PC-based
platforms.

In order to achieve and maintain information superiority on the battlefield, the
architectural framework for DoD COTS/GOTS/legacy systems shall have the capability
to share, receive and transmit on heterogeneous networks and hardware devices.

The exchange of data between two systems shall be in such a way that interpretation of
the data is precisely the same. The data displayed on two different systems shall remain
consistent. The architectural framework shall include standard application program
interfaces (APIs). APIs specify a complete interface between the application software
and the platform across which all services are provided. A rigorous definition of the
interface results in application portability provided the platform supports the API as
specified, and the application uses the specified API. The API definitions shall include
the syntax and semantics of the programmatic interface as well as the necessary protocol
and data structure definitions.

Adopted Framework Technology
Java/C++, web technologies, open systems, application program interfaces, common
operating environment, object and component technology, commercial products and
standards are all important to the COTS/GOTS/legacy system architecture.

The COTS/GOTS/legacy system shall adopt the Interface Definition Language (IDL) as
the language for expressing the syntax of the framework services.

126

COTS/LEGACY ARCHITECTURAL FRAMEWORK SRS 06/28/00

The COTS/GOTS/legacy system architecture shall be expressed as UML class and
package diagrams, with detailed component descriptions using IDL with English
narrative to provide semantics.

Security

DoD tactical systems are normally classified to some security level. In buiding this
architectural framework, the architecture shall address the DoD Trusted Computer
System Evaluation Criteria (TCSEC) to at least the C2 security level.

The architecture shall include discretionary access control (DAC).

Only single level classification systems shall be supported in this architecture (i.e. no
multi-level security (MLS).

Assembled components shall not require modification to add security services.

The security mechanisms shall be protected from unauthorized access.

The following security services shall be available to the component assembler:

1. Single login for users

The single login for users means the user needs to identify himself once per
session. It is the responsibility of the security services to protect and
distribute the authentication information of a user.

2. Mutual authentication

Mutual authentication ensures proper identification of the user to the system
and the system to the user.

3. Auditing

Auditing means significant security events are recorded for later analysis.
Significant security events shall include logon and logoff, security policy
changes, user and group management, and access to specified objects.

4. Secure key distribution

Key distribution provides a secure transport mechanism for encryption keys.

5. Role based Access Control

Role based access control assigns roles to users and privileges to roles,
thereby simplifying access control if the number of roles is less than the
number of users.

6. Data confidentiality

Data confidentiality means data is disclosed according to a policy.

7. Data integrity

Data integrity means the recipient gets the intended data.

8. Non-repudiation and authenticity

127

COTS/LEGACY ARCHITECTURAL FRAMEWORK SRS 06/28/00

Non-repudiation means the sender of a message can not later deny he sent the
message.

Network Security

The trend in DoD is for networked systems vice standalone monolithic systems and
because most systems have some level of classification, this architecture shall address
network security.

The architectural framework shall support a secure network.

The architectural framework shall support the network security mechanisms specific to
the target architecture, including firewalls, routers, encryption, and proxy services.

Network Communications

The architectural framework shall support different network protocols (i.e. TCP/IP) and
topologies dependent on the target architecture.

The application layer shall be able to execute a variety of data management commands
without having knowledge of the data location, database, file type, operating system,
network protocol, or platform location.

Development Language
The architectural framework shall support any development language that is supported by
the legacy system as well as any development language that supports platform
independence for newly developed code in the target architecture.

2.2 Assumptions and Dependencies

Assumption 1: Legacy systems are monolithic and not modifiable.

Assumption 2: Legacy systems have some existing mechanism for interaction.

Assumption 3: There are varying degrees of COTS. To be considered COTS, the
component cannot be modified.

Assumption 4: Reliability, performance, safety and security must be weighed in the
target architecture.

Assumption 5: Multilevel security systems are beyond the scope of this effort.

3. TARGET ARCHITECTURE FUNCTIONS

Database

COTS software applications which handle data tend to have their own mechanism and
structure for the storage of the data internal to the COTS application. When the target

128

COTS/LEGACY ARCHITECTURAL FRAMEWORK SRS 06/28/00

architecture includes a master database to store its data, the architectural framework shall
support the target architecture's central storage of data. The architecture shall support
remote access to the database.

Security

The target architecture shall support Discretionary Access Control (DAC).

Access to information controlled by an application shall be based on an access control list
(ACL) of a parameter that can be used to distinguish between authorized and non-
authorized entities. Entities include users, devices, and other applications.

The target architecture shall support non-repudiation.
a. The data recipient shall be assured of the originator's identify.

b. The data originator shall be provided with proof of delivery.

c. The algorithm used to digitally sign data entries and receipts shall be either the
Digital Signature Standard (DSS) FIPS 186 or RSA (1024 bit).

d. The original transmitted data signed by the sender and the requested receipt
signed by the recipient shall be time-stamped by a trusted third party.

Graphical User Interface (GUI)
The target architecture shall include a GUI style guide. If a GUI style guide does not
exist for the target architecture, UNIX platforms shall adhere to the MOTIF standard and
X-Windows standard, and PC platforms shall adhere to the Windows NT standard.

External System Interfaces

Because the target architecture exists in a network environment where it shares data with
other external systems, the external system interfaces where information is exchanged
shall be well defined to support interoperability.

Middleware Technology

The COTS/GOTS/legacy architecture shall support new component integration
technologies (i.e. COM/DCOM) to broker between components that by themselves
normally do not communicate to form an integrated system.

The target architecture shall support wrappers to enable COTS/GOTS applications to
interface with each other.

The wrappers shall support the METOC data (listed in Table 6 of reference 1) and its
various formats within NITES. The architecture shall ensure when an application
updates a set of data, the update is consistently made throughout the rest of the database.

129

COTS/LEGACY ARCHITECTURAL FRAMEWORK SRS 06/28/00

4. ARCHITECTURE ATTRIBUTES

4.1 Performance Requirements

The performance requirements for the target system are contained in Table 6B of the
NITES Performance Specification. In addition to those performance requirements, the
following requirements shall also be addressed in the target architecture.

The architecture shall optimize the database access over a network.

The architecture shall allow concurrent access of the database to multiple users.

The component technology shall not degrade the system performance by more
than 10% of the target system's current performance requirements. Refer to
Table 6B of the NITES Performance Specification.

4.2 Reliability Requirements

The target architecture shall use standard fault-tolerant technologies (i.e. Replication to
maintain the reliability and availability requirements of DoD systems.)

While the data traverses throughout various applications, to different platforms, through
the network and to/from database, it must remain consistent and not suffer any
degradation.

4.3 Design Constraints
Because many existing legacy systems reside on UNIX platforms and the DoD has made
a commitment to move towards a PC architecture, the architectural framework shall
support both UNIX and PC platforms with the goal of moving towards a pure PC
architecture. It is not required that all COTS/GOTS/legacy system components be
executable on both platforms but the data must be able to be shared by components on
different platforms.

Newly developed DoD systems must use COTS products to the greatest extent possible.

As most COTS/GOTS applications are designed to be standalone, these applications will
usually have their own way of retrieving and storing data. When these applications are
integrated into a system, the internals of the application of how it retrieves and stores data
will not be modified.

There are varying degrees of COTS products. Depending on whether the COTS product
is an opaque or a black box will drive the wrapper design and implementation.

130

APPENDIX C. SOFTWARE DESIGN SPECIFICATION (SDS) FOR AN
ARCHITECTURAL FRAMEWORK OF DOD COTS/GOTS/LEGACY SYSTEM

131

Software Design Specification

For An

Architectural Framework

Of

DoD COTS/GOTS/Legacy System

132

TABLE OF CONTENTS

1. SCOPE 134
1.1 Identification 134

2. APPLICABLE DOCUMENTS 134
3. SYSTEM ARCHITECTURE 134

3.1 System Architecture Diagram 134
3.2 Inter-task Communication 139

Monitor/Controller 139
Controller/Glue Component 139
CBWrapper/Controller 139
CBWrapper/Glue Component 139

3.3 Subsystem Description 139
Monitor 139
Controller 139
Glue Component 141
CBWrapper 145
Initialization GUI 145
Configuration GUI 145
Naming Convention 145
Thin Client Technology 146
Push Technology 146
OMF 146

133

1. SCOPE

1.1 Identification

The system defined by this document is the Naval Integrated Tactical Environmental System (NITES).
This document establishes the system design for the NITES. The requirements are stated in the
Performance Specification (PS) for the Tactical Environmental Support System / Next Century
TESS(3)/NC (A/N UMK-3) (NITES version I and II) and the Software Requirements Specifications for An
Architectural Framework of DoD COTS/GOTS/Legacy System. The requirements for the architectural
framework as well as the target architecture are documented in the SRS. The SRS lists requirements above
and beyond those in the NITES Performance Specification to satisfy the architectural requirements.

2. APPLICABLE DOCUMENTS
Performance Specification (PS) for the Tactical Environmental Support System / Next Century TESS(NC)
(AN/UMK-3) (NITES version I and II)

Software Requirements Specifications for An Architectural Framework of DoD COTS/GOTS/Legacy
System

3. SYSTEM ARCHITECTURE

3.1 System Architecture Diagram
The Naval Integrated Tactical Environmental System (NITES) software is designed to run in a distributed,
heterogeneous environment on standard commercial-off-the-shelf (COTS) personal computers (PCs) and
TAC-4 UNDC computers.

The NITES architecture consists of a central database residing on a UNDC computer, which is shared
amongst the various NITES components (most of which reside on PCs with the exception of the tactical
applications which reside on a TAC-4 UNDC computer) as depicted in figure 1. In this topology, there is
no direct interaction between the components. All interactions are through the central database. This
topology allows ease of integration of COTS components as it minimizes the integration effort as each
component only has one interconnection.

134

Forecaster
Applications

Network
Communications Database

Serial
Communications

Tactical
Applications

Briefing
Utility

Figure 1 - NITES Architecture Diagram

Forecaster applications (COTS/GOTS) - Manipulate METOC data to easily plot, analyze, display on a
common geographical reference.

Serial Communications (Legacy code) - Handles the ingest and dissemination of METOC data through
existing legacy communication channels.

Briefing (COTS) - Briefing utility used to brief tactical commanders, flight operators the environmental
conditions that they will be operating in.

Tactical applications (Legacy code and newly developed code) - Tactical applications take in METOC data
to predict the affects of the environmental conditions on the environment, tactical equipment, etc.

Database (GOTS) - The database is the central repository for all METOC data.

Network communications (GOTS) - Handles the ingest and dissemination of METOC data through
SIPRNET.

The deployment diagram, as depicted in figure 2, consists of a NITES Server, a NITES Database Server,
and NITES workstations with a communications package, an applications package, a database package, a
system controller package, a security package and a briefer package residing on multiple hardware
platforms.

135

Figure 2 - Deployment Diagram

In the NITES architecture, all interactions are through the NITES database. However, in the initial delivery
of the NITES software, this architecture was violated since none of the COTS applications were able to
communicate with the NITES database to retrieve and/or store data and products.

A prototype of a portion of the NITES system will be developed to demonstrate the NITES architecture
using the architectural design pattern as depicted in figure 3. A system controller package, wrapper and the
glue packages are newly developed for the NITES. The COTS applications packages and the briefer
package will be modified to use wrapper and glue technology to enable it to communicate with the database

136

package. These packages will be designed and developed to move the system in the direction of
conforming to the existing NITES architecture.

137

Application ^ Controller ^ Monitor
Wrapper ^ ^

i l

v
Glue COTS

Application

ODBC
Compliant
Database

Figure 3 - Architectural Design Pattern

138

3.2 Inter-task Communication

The tasks on the NITES will be implemented to run asynchronously. Communications are broken down
between the following tasks:

• Monitor/Controller
• Controller/Glue Component
• CBWrapper/Glue Component
• CBWrapper/Controller

The Application Wrapper is responsible for making the object available to a COTS viewer application.

Monitor/Controller

Slides for the briefing package are generated by the operator using an external COTS/GOTS application.
As each of these slides is generated, it is saved to a directory by the COTS/GOTS application. The system
monitor polls the directory and when a file is found, notifies the controller.

Controller/Glue Component

When the controller receives notification from the monitor that a new file exists, the controller will create
an instance of the glue component.

CBWrapper/Controller

CB Wrapper registers interest in new products with the controller.
When the controller is notified by the glue component that a file is successfully stored in the database, it
will broadcast the information to all the wrappers running on client workstations. It is the responsibility of
the CB Wrapper to ignore image types not appropriate for the current brief. This assumes there is at least
one wrapper running.

CBWrapper/Glue Component

The CB Wrapper requests an image product from the glue code, which will use the existing database APIs
to connect to the database, retrieves the product and returns it to the CB Wrapper. The request mechanism
is used to initialize and update the brief.

3.3 Subsystem Description

The object diagram and sequence diagram depicts objects required to design the update of a briefing
package and the scenarios of initializing and updating a briefing package, and storing data to the database
are shown in figures 4, 5, 6 and 7 respectively.

Monitor

The Monitor component is responsible for detecting the presence of a new object.

Controller

The controller component is handled by the Distributed Component Object Model (DCOM) and is
responsible for coordinating multiple concurrent asynchronous activities. The controller runs on the

139

application server. It serves two functions within the system, handling notifications from the monitor and
the glue component.

140

Figure 4 - Wrapper & Glue Code Object Diagram

141

App
Wrapper

System
Controller

System
Monitor

Reaisters with

 : ►

Storage
Directory

Glue
Component

Requests for objects

Obiects readv

<

Database

Makes the connection

 ►

Retrieves obiect from database

Terminates the connection

Notifies controller when done retrieving objects

Retrieves objects

Creates Presentation

Figure 5 - Continuous Brief Initialization Sequence Diagram

142

ABB
Wrapper

System
Controller

Notifies con roller if there's new object

System
Monitor

Storage
Directory

Application Glue
Component

Saves object to directory

N
Polls directory for new obiect

 ►

Obiects readv

<

Requests for storing object to database

Database

Makes the connection

 ►

Stores obiect to database

 ►

Terminates the connection

 ►
Notifies controller when done storing object to database

Requests for objects

Makes the connection

 ►

Retrieves obiect and stores

Terminates the connection

Notifies controller when done retrieving objects

Retrieves objects

Updates Presentation

Figure 6 - Continuous Brief Update Sequence Diagram

143

System Monitor System Controller Application Storage Directory Glue Component Database

Saves obiect to directory

 ►
Polls directory for new obiect

Notifies controller if there's net/ object

Requests for storing object to database

Makes the connect» m

 ►

Stores obiect to database

 ►

Terminates the connection

<

Figure 7 - Store Object Into Database Sequence Diagram

144

Glue Component

The glue component is responsible for connecting, storing and retrieving objects from an ODBC compliant
relational database.

CBWrapper

Wrappers are software code developed to add, modify, and hide functionality from COTS, GOTS or legacy
software components to align them with the overall system requirements and architecture. In the design,
wrapper and glue code technology is being implemented to enable the COTS applications to adhere to the
existing NITES architecture.

The briefing package consists of Microsoft PowerPoint, a COTS application package. The PowerPoint
application contains APIs, which can be used by CBWrapper to create the added functionality of
automatically creating and updating the briefing package in the background.

The PPT APIs used for the wrapper interface include:
Presentations.Add
Slides.Add
SlideShowTransition
SlideShowSetting
Shapes.AddPicture
Shapes.PictureFormat

Initialization GUI

The Initialization GUI is used to initialize each component with the number of images, starting from the
most current; the image type; the display duration of each image in seconds; and the height and width of the
display area. Default values are 24 images, 0 second duration, and display area equal to the workstation's
screen size.

Configuration GUI

The Configuration GUI defines the set of image types available for the brief. Associated with each image
type is the working directory containing the current set of brief images and a web server virtual directory
corresponding to the working directory. The CBWrapper uses the configuration file to initialize the image
type options available to the briefer. The monitor uses the configuration file to build a list of directories to
poll.

The Configuration GUI is not restricted to the image types settings. It can be used for defining various sets
of key values. For instance, we can use this Configuration GUI to define the key set values for network
configuration, or application's initial default settings. This provides the extensibility for future development
of applications.

Naming Convention

The filename associated with each image type consists of the fields representing the created date and time,
the file format (i.e., gif, jpeg, etc.), and other information for a particular image (i.e., the channel, the
location, etc.)

The filename begins with the date and time, followed by other information. For instance, a file named
"20000523.1331.gms5.IR.MODEL_OVERLAY.500HT.NOGAPS" indicates that the file was created on

145

May 23,2000, at 13:31. The CB Wrapper uses the date and time embedded in the filename for updating the
continuous brief.
The other information of the filename is used by the Glue component for storing and retrieving images to
and from the database.

Thin Client Technology

CBWrapper is implemented using modern thin client technology. When a user opens an HTTP page from a
browser, the CBWrapper is then automatically downloaded and installed on the client machine. Once the
CBWrapper is up and running, all images needed for creating the brief are dynamically downloaded from
the server using the OpenURL method. OpenURL uses the current open HTTP connection to transfer
image files. The continuous brief is created on the client machine using the PowerPoint APIs. PowerPoint
is used to display the brief.

Push Technology

The advantage of using this technique is that the client needs not poll the server periodically for new data.
The server notifies its clients (CBWrapper) when new data (images) arrives. The CBWrapper receives the
notification and compares the image type with the type being shown. If the image types match, the
CBWrapper downloads a new set of images from the server and updates the brief.

OMF
Sharing different formatted data requires a common representation of data to interpret, send, and receive
any data, any format, anywhere. Within NITES, meteorological and oceanographic observations, and
certain types of bulletins (SIGMETS, JOTS warnings, and Tropical Cyclone Warnings, for example) are
received and transmitted in an Extensible Markup Language (XML)-based format called Weather
Observation Markup Format (OMF). OMF preserves the original text of each observation or bulletin, and
also includes information decoded from the observation/bulletin and other metadata concerning the
message.

OMF solves the data interoperability problem by providing self-describing tags along with the data so that
the receiving applications can consistently interpret the data correctly. These self-describing tags are
detailed in the Document Type Definition (DTD). When drafting the NITES data into OMF, three things
must be agreed on: which tags will be allowed, how tagged elements may nest within one another and how
they should be processed. The first two, the language's vocabulary and structure, are codified in the DTD.

OMF is an application of XML, and by its virtue, an application of SGML. SGML is used extensively
within DoD for documenting of various types of information (military standards, procurement materials,
service manuals). OMF brings weather observations into the same fold. Thus, the design goals of OMF
are:

• Mark up (annotate) raw observation reports with additional description and derived, computed
quantities.

• The raw report data must not be modified in any way, and should be conveniently extractable (by
simply stripping all the tags away).

• OMF must be concise. While providing useful annotations to a client, OMF markup should not
impose undue overhead on communication channels.

• It should be possible to extend the markup with additional annotations, without affecting
applications that do not use this information.

The OMF contains the following elements:

146

• Reports - defines a group of weather observation reports

• METAR for a single METAR report

• SPECI for a single SPECI report

• UAR for a combined Rawinsonde and Pibal Observation report

• BTSC for ocean profile data (temperature, salinity, current)

• SYN for a surface synoptic report from a land or sea station

• Advisories - defines a collection of weather hazard warnings

• SIGMET - SIGnificant METeorological Information

• Forecasts - defines a set of weather forecasts

• TAF - Terminal Aerodrome Forecasts

• Messages - defines a set of plain-text bulletins.

The following sections define the major elements along with the minor elements that are relevant to them.
In each section, XML DTD declarations are provided for precise definition of elements and attributes. The
collection of XML DTD declarations found in this specification can be arbitrarily extended to add new
elements and attributes for new enhancements. Some of the element attributes are common. For
compactness, they are defined in the following table.

147

Table 1-1. Basic Attributes of an Observation in OMF

Attribute Brief Description Format Description
TStamp Time Stamp unsigned integer UTC time in seconds since the

Epoch, 00:00:00 Jan 1, 1970
UTC. This is the value returned by a
POSIX function time (2).

Example:
Tstamp='937507702'

TRange Time Interval a string of form
"aaa, bbb",
where aaa and bbb
are unsigned integer
numbers specifying
the beginning and
the end timestamps
of the interval.

Timestamps are in seconds since the
Epoch, 00:00:00 Jan 1, 1970
UTC. These are the values returned
by a POSIX function time (2).

Example:
Trange='937832400, 937915200'

LatLon Specification of a
point on the globe

A string of a form
"aaa.bbb,
ccc.ddd", where
aaa.bbb and
ccc.ddd are signed
floating point
numbers

Specification of a
sequence of
points on the
globe

The latitude and. longitude,
respectively, of a point on the globe,
in whole and fractional degrees. The
numbers are positive for Northern
latitudes and Eastern longitudes, and
negative for Southern latitudes and
Western longitudes.

The range of the numbers is [-90.0,
90.0] for latitudes, (-180.0, 180.0] for
longitudes.

Example:
Latl_on='32.433, -99.850'

LatLons a string of a form
"latl, lonl,
lat2, lon2,
latn, lonn"
where each pair
(latl, lonl, etc.)
are signed floating
point numbers

A sequence of pairs of numbers,
each pair giving the latitude and
longitude of a single point in the
sequence, in whole and fractional
degrees.

See the LatLon attribute above for
more details.

Example:
LatLons='38.420, -111.125, 36.286, -
111.492, 36.307, -112.630, 37.700, -
113.223,38.420,-111.125'

148

Attribute Brief Description Format Description
BBox Bounding box,

which tells the
latitudal and the
longitudal spans of
an area of the
globe

A string of a form
"lat-N, lon-W,
lat-S, lon-E",
where the lats
and ions are signed
floating-point
numbers, in degrees

Specification of the bounding box for
an area of interest. Here lat-N is
the latitude of the Northern-most
point of the area, lat - s is the
latitude of the Southern-most point,
lon-w is the longitude of the
Western-most point of the area, and
lon-E is the Eastern-most
longitude.

It is required that lat-N >= lat-S.
The left-Ion (lon-w) may however
be greater than the right-Ion (lon-
E).
For example, a range of
longitudes [-170,170] specifies
the entire world but Indonesia. On
the other end, the range [170,
-170] includes Indonesia only. By
the same token, [-10,10] pertains
to a 21-degree longitude strip along
the Greenwich meridian, while
[10,-10] specifies the whole
globe
except for that strip.

Example:
Bbox='60.0, -120.0, 20.0, -100.0'

Bid Station
identification
group

Unsigned integer WMO Block Station ID, or other
identifier for buoy or ship

SName Call sign and full
name of an
observing station

A string of the form
" ccccc, name",
where ccccc are
the call letters of the
station (ICAO

station
id: 4 or 5 upper-case
letters, may be
omitted), name is an
arbitrary string
describing the
station

The observing stations ICAO,
aircraft, or ship call sign, plus a plain-
text
station name (e.g. "KMRY,
Monterey CA Airport"

Example:
Sname='KYNL, YUMA (MCAS)'

Elev Elevation A non-negative
integer, or omitted if
unknown.

Station elevation relative to sea
level,
in meters. This attribute may specify
a surface elevation of an observation
station, or an upper-air elevation for
an upper-air report.

Example: Elev='16'

149

Table 1-2. OMF Attributes for METAR and SPECI Reports

Attribute Brief Description Format Description Req'd?
TStamp Time Stamp < see Table 1-1 > Yes
LatLon Station latitude and

longitude
< see Table 1-1 > Yes

Bid Station
Identification
Group

Unsigned integer WMO Block Station ID Yes

SName Call sign and full
name of an
observing
station

< see Table 1-1 > Yes

Elev Station elevation < see" fable 1-1 > No
Vis Visibility a number of meters,

omitted, or a special
token "INF"

Horizontal visibility in
meters

No

Ceiling Ceiling a number of feet,
omitted, or a special
token "INF"

Ceiling in feet No

150

Table 1-3. OMF Attributes for the SYN Element

Attribute
TStamp
LatLon

Bid

Brief Description
Time Stamp
Station latitude and
longitude
WMO Block Station
Number

Format
-See Table 1-1-

Description

-See Table 1-1-

String

SName

Elev
Title

Stype

Call sign and full
name
of an observing
station
Station elevation
Report title

Station type

-See

For a buoy or other
observation platform, this
id is a combination of a
WMO region number,
subarea number (per
WMO Code Table 0161),
and the buoy type and
serial number. This
information is reported in
Section 0 of a synoptic
report.

If Section 0 contains a call
sign rather than a
numerical id (as typical
with FM 13 SHIP reports),
the Bid attribute is
computed as
itoa(1000009 + he)

% 2A30, where he is a
numerical representation
of the call letters
considered as a number in
radix 36 notation. For
example, "oooo" hashes
to 0, and "zzzz" hashes to
1,679,615. Note this
formula makes the Bid
attribute a unique numeric
identifier for the station.
able 1-1- —>

-See Table 1-1-
String

String

Req'd?
Yes
Yes

Yes

Yes

No
Title defining type of
report: AAXX (FM-12),
BBXX(FM-13),orZZYY
(FM-18)

Yes

Type of station: automated
(AUTO) or manned
(MANN); defaults to
MANN

No

151

Table 1-4. OMF Attributes for the SYG Element

Attribute Brief Description Format Description Req'd?
T Air

Temperature
positive, zero, or
negative number

Air temperature in degrees
Celsius

No

TD Dew point
Temperature

positive, zero, or
negative number

Dew point temperature in
degrees
Celsius

No

Hum Relative
humidity

non-negative
number

Relative humidity in per cent No

Tmm Extreme
temperatures
over the last
24 hours

a string of a form
"nimmm, MMMM" or
omitted

Minimum and maximum
temperatures (degrees Celsius)
over the last 24 hours

No

P Station
pressure

positive number Atmospheric pressure at station
level, in hectoPascals

No

PO Sea level
pressure

positive number Atmospheric pressure at
station,
reduced to sea level, in hPa

No

Pd Pressure
tendency

String of form
"dddd", or omitted

Pressure tendency during the 3
hours preceding the
observation

No

Vis Visibility Number of
meters,
omitted, or a
special token
"INF"

Horizontal visibility in
meters

Horizontal visibility in meters No

Ceiling
Ceiling

Ceiling Number of feet,
omitted, or a
special token " INF"

Ceiling in feet No

Wind Wind speed and
direction

String of form
"nnn, mm" or
omitted

nnn is a true direction from
which
the wind is blowing, in degrees,
or
VAR if" the wind is variable, or
all
directions or unknown or waves
confused, direction
indeterminate." This is an
integer
numberwithin [0,360), with o
meaning the wind is blowing
from
true North, 270 stands for the
wind blowing from due West.
Normally this number has a
precision of 10 degrees.

No

•

mm is the wind speed in meters
per second. |

152

Table 1-4. OMF Attributes for the SYG Element (Cont.)

Attribute Brief Description Format Description Req'd?
Wx Past and

present
weather
conditions and
phenomena

String of four digits,
"NOSiG", or

omitted

See WMO-306, Code tables
4677
and 4561 for the meaning of the
four digits. This attribute is
coded
as "NOSiG" if there is no
significant phenomenon to
report.
The attribute is omitted if not
observed or data is not
available
(see iX indicator, Code table
1860).

No

Prec Precipitation
amount

String of form
"nnn, hh" or "" or
omitted

nnn is the amount of
precipitation
which has fallen during the
period
preceding the time of
observation.
The precipitation amount is a
non-negative
decimal number, in mm.
hh is the duration of the period
in
which the reported precipitation
occurred, in whole hours. This
attribute is encoded as "" if no
precipitation was observed. The
attribute is omitted if unknown
or
not available (see ±R indicator,
Code table 1819). Sea stations
typically never report
precipitation.

No

Clouds Amounts and
types of cloud
cover

String of five
symbols "tplmh"
or omitted

The first digit is the total cloud
cover in octas (Code table
2700).
The second digit is the cloud
cover of the lowest clouds, in
octas. The other three symbols
are types of low, middle, and
high
clouds, resp. See WMO-306
Code tables for more details.

No

153

Table 1-5. OMF Attributes for the SYSEA Element

Attribute

Wave

Brief Description
Sea surface
temperature
Sea wave period
and height

SDir

Format
Positive, zero, or
negative number
String of form
"pp, hh"or
omitted

Ship's course
and speed

String of form
"nnn, mm" or
omitted.

Description
Sea surface temperature in
degrees Celsius

Req'd?
No

No
pp is the period of wind waves
in seconds.
hh is the height of wind waves,
in meters.
If a report carries both
estimated and measured wind
wave data, the instrumented
information is preferred.
mm is a true direction of
resultant displacement of the
ship during the three hours
preceding the time of
observation. The number is in
degrees, or VAR if "variable, or
all directions or unknown or
waves confused, direction
indeterminate." This is an
integer number within
[0,360), with o meaning the
ship has moved towards the
true North; 270 means the ship
has moved to the West.
Normally this number has a
precision of 45 degrees.

mm is the average speed made
good during the three hours
preceding the time of
observation, in meters per
second.

No

154

Table 1-6. OMF Attributes for the UALEVEL Element

Attribute
Ref

H

Brief Description
Reference to
sounding Part

Pressure

Geopotential
height

DP

Wind

Air
Temperature
Dew point
temperature

Wind speed
and direction

Format
String - "TTAA",
"TTBB", etc.

positive number

Non-negative number
of geopotential
meters, or 'SURF' for
surface, TROP' for
tropopause, 'MAXW
for level of maximum
winds, 'MAXWTOP'
for maximum wind
level at the top of the
sounding, or omitted

Description
Reference to the part of the
sounding from which the level
data were derived

Req'd?
Yes

Atmospheric pressure at
sounding level, in hectoPascals

Yes

Geopotential height of the
reported level, or a special
height indicator

positive, zero, or
negative number
positive, zero, or
negative number

String of form "nnn,
mm"or"nnn, mm
bbb" or "nnn, mm
,aaa"or"nnn, mm
bbb, aaa" or
omitted

Air temperature in degrees
Celsius at the reported level
Dew point temperature in
degrees Celsius at the reported
level

No

No

No

nnn is a true direction from No
which the wind is blowing, in
degrees, or VAR if" the wind is
variable, or all directions or
unknown or waves confused,
direction indeterminate." This is
an integer number within
[o, 360), with o meaning the

wind is blowing from true North,
270 stands for the wind
blowing
from due West. Normally this
number has a precision of 10
degrees.

mm is the wind speed in meters
per second.

If specified, bbb stands for the
absolute value of the vector
difference between the wind at
a given level, and the wind 1
km below that level, in meters
per second. The number aaa if
given is the absolute value of
the vector difference between
the wind at a given level, and
the wind 1 km above that level,
in meters per second.

155

Table 1-7. OMF Attributes for the BTSC Element

Attribute Brief Description Format Description Req'd?
TStamp Time Stamp See Table 1-1 Yes
LatLon Latitude and

Longitude of
observation

See Table 1-1 Yes

Bid Station
identifier
group

positive integer For a buoy or other observation
platform, this ID is a combination of a
WMO region number, subarea
number (per WMO-306 Code Table
0161), and the buoy type and serial
number. This information is reported
in Section 4 of a BTSC report.
If Section 4 contains a call sign rather
than a numerical id, the Bid attribute

is computed as itoa (1000009 +
he), where he is a numerical
representation of the call letters
considered as a number in radix 36
notation. For example, "oooO"
hashes
to 0, and "zzzz" hashes to
1,679,615.
Note this formula makes the Bid
attribute a unique numeric identifier
for the station.

Yes

SName Call sign string Ship's call sign, if reported Yes
Title Report type string " JJYY" - FM 63 X Ext. BATHY report

"KKXX" - FM 64 IX TESAC report
"NNXX" - FM 62 TRACKOB report

Yes

Depth Water depth positive
number

Total water depth at point of
observation

No

156

Table 1-8. OMF Attributes for the BTID Element

Attribute Brief Description Format Description Req'd?
DZ Indicator for

digitization
"7" or "8" or
omitted

Indicator for method of digitization
used in the report (M field). See
WMO-306 Code Table 2262.
Required for BATHY and TESAC
reports

No

Rec Instrument
type code

5-digit code Code for expendable
bathythermograph (XBT) instrument
type and fall rate (WMO-306 Code
Table 1770).

No

WS Wind speed
units code

ti/yi HA ti noii noil

or omitted
Indicator for units of wind speed
and
type of instrumentation (m field). See
WMO-306, Code Table 1853.

No

Curr-s Method of
current speed
measurement

"2", "3", "4", or
omitted

Indicator for the method of current
measurement (ks field). See WMO-
306
Code Table 2266.

No

Curr-d Indicators for
the method of
subsurface
current
measurement

3-digit
numerical code

Indicators for the method of
subsurface current measurement
(K6k4k3 codes). See WMO-306,
Code
Tables 2267, 2265, and 2264.

No

AV-T Averaging
period for sea
temperature

itrtii it.«ii iirtn iiqn

or omitted (if no
sea
temperature
data are
reported)

Code for the averaging period for
sea
temperature (mTCOde). See WMO-
306,
Code Table 2604

No

AV-SAL Averaging
period for
salinity.

llrtll 11.411 IH-JII IIQII

or omitted (if no
salinity data are
reported)

Code for the averaging period for
sea
salinity (mscode). See WMO-306,
Code Table 2604

No

AB-Curr Averaging
period for
surface
current
direction and
speed

"0", "1", "2", "3",
or omitted (if no
current data
are reported)

Code for the averaging period for
surface current direction and speed
(mccode). See WMO-306, Code
Table 2604

No

Sal Method of
salinity/depth
measurement

"1", "2", "3", or
omitted (if no
salinity data are
reported)

Code for the method of
salinity/depth
measurement (k2Code). See WMO-
306, Code Table 2263.

No

157

Table 1-9. OMF Attributes for the BTAIR Element

Attribute Brief Description Format Description Req'd?
T Air

temperature
Positive, zero,
or negative
number, or
omitted

Air temperature just above the sea
surface, in degrees Celsius.

No

Wind Wind vector String of form
"nnn,mm", or
omitted

Here nnn is a true direction from
which the wind is blowing, in
degrees,
or VAR if" the wind is variable, or
all
directions or unknown or waves
confused, direction indeterminate."
This is an integer number within
[0,360), with o meaning the wind

No

is
blowing from the true North;, 270
means the wind is blowing from the
West. Normally this number has a
precision of 10 degrees.
mm is the wind speed in meters per
second.

158

Table 1-10. OMF Attributes for the BTLEVEL Element

Attribute Brief Description Format Description Req'd?
D Depth Non-negative

number
Depth of the level in meters. Yes

T Water
temperature

Positive, zero,
or negative
number, or
omitted

Water temperature at the reported
level.

No

S Salinity Positive
number, or
omitted

Salinity at the reported level, in
parts
per thousand.

No

C Current vector
String of form

"nnn,mm", or
omitted

mm is the true direction toward
which
the sea current is moving, in
degrees,
or VAR if "the current is variable, or
all
directions or unknown, direction
indeterminate." This is an integer
numberwithin [0,360), with o
meaning the current flows toward
true
North; 2 70 means the current is
flowing toward the West. Normally
this number has a precision of 10
degrees.

mm is the speed of current in
meters
per second.

No

Table 1-11. OMF Attributes for the TAF Element

Attribute Brief Description Format Description Req'd?
TStamp Time Stamp < — See Table 1-1 > Yes
LatLon Latitude and

Longitude of
observation

< , — See Table 1-1 > Yes

Bid Block Station
ID

positive integer WMO Block Station ID of the
reporting station

Yes

SName Call sign string Ship's call sign, if reported Yes

159

Table 1-12. OMF Attributes for the SIGMET Element

Attribute Brief Description Format Description Req'd?
class SIGMET type "CONVECTIVE",

"HOTEL",
"INDIA",
"UNIFORM",
'VICTOR",
"WHISKEY"

Identifier for the type of SIGMET
message

Yes

id Identifier for a
particular
advisory

String Identifier for the advisory; value
depends on the advisory class.

Yes

TStamp Time Stamp See Table 1-1 Yes
BBox Bounding box

for advisory
area

See Table 1-1 Yes

Table 1-13. OMF Attributes for the EXTENT Element

Attribute Brief Description Format Description Req'd?
Shape Type of area

specification
"AREA", "LINE",
"POINT'

Type of area shape specified Yes

LatLons List of
latitudes and
longitudes
defining the
area

Positive, zero, or
negative
numbers in lat/lon
pairs

Control points (vertices) for a
polygon/polyline representing the
affected area

Yes

160

Table 1-14. OMF Attributes for the MSG Element

Attribute Brief Description Format Description Req'd?
id Message

identifier
A NMTOKEN, a
four-to-six-
character
string
of a form
T1T2A1A2Ü

Designator for the message type
and subtype (T1T2), area (A1A2),

and sequence code (ii) of the
message, as described in WMO-
386.

Yes

Type Message type 2-letter string
(T1T2)

Designator for the message type
and subtype (T1T2) as specified in
WMO-386, Tables A and B1
through B6

Yes

TStamp Time Stamp < see Table 1-1 > Yes
SName Originating

station name
String String containing the identification

of the station that originated the
message (normally its ICAO call
sign)

Yes

BBB Annotation
group

3-character string So-called "BBB groups" from the
abbreviated message line. They
indicate that the message has been
delayed, corrected or amended. A
BBB group can also be used for
segmentation. See the WMO-386
for more detail.

No

Descr Description String Keywords and other information
describing the message.

No

BBox Bounding box < see Table 1-1 > No

161

Table 1-15 Layer Parameter Codes

layer Description Example
adiabatic-cond Adiabatic condensation level

(parcel lifted from surface)
(layer adiabatic-cond)

atm-top Level of the top of the
atmosphere

(layer atm-top)

cloud-base Cloud base level (layer cloud-base)
cloud-top Cloud top level (layer cloud-top)
conv-cld-base Level of bases of convective

clouds
(layer conv-cld-base)

conv-cld-top Level of tops of convective
clouds

(layer conv-cld-top)

entire-atm Entire atmosphere (layer entire-atm)
entire-ocean Entire ocean (layer entire-ocean)
height Height above ground (meters) (layer height 1500)
height-between Layer between two heights

above ground in hundreds
meters (followed by top and
bottom level values)

(layer height-between 50
30)
for layer between 5000 and 3000
meters above ground

height-between-ft Layer between two heights
above ground, in feet
(followed by top and bottom
level values)

(layer height-between-ft
15000 10000)

height-ft Height above ground (feet) (layer height-ft 50)
high-cld-base Level of high cloud bases (layer high-cld-base)
high-cld-top Level of high cloud tops (layer high-cld-top)
hybrid Hybrid level (followed by level

number)
(layer hybrid 1)

hybrid-between Layer between two hybrid
levels (followed by top and
bottom level numbers)

(layer hybrid 2 1)

isobar Level of an isobaric surface
(followed by the isobar value
of the surface in
hectoPascals (hPa) (1000,
975, 950,
925,900,850,800,750,700,65
0,600,550,500,450,400,350,3
00,250,200, 150,100, 70, 50,
30,20,10)

(layer isobar 500)

isobar-between Layer between two isobaric
surfaces (followed by top and
bottom isobar values in kPa,
separated by a space)

(layer isobar-between 50
100)
for layer between 500 and 1000
hPa

isobar-between-mp Layer between two isobaric
surfaces, mixed precision
(followed by pressure of top
in kPa and 1100 minus
pressure of bottom in hPa)

(layer isobar-between-mp
50 100)
for layer between 500 and 1000
hPa

162

Table 1-15 Layer Parameter Codes (Cont.)

Layer Description Example
isobar-between-xp Layer between two isobaric

surfaces, extra precision
(followed by top and bottom
isobar values expressed as
1100 hPa-isobar level,
separated by a space)

(layer isobar-between 600
100)
for layer between 500 and 1000
hPa

isotherm-0 Level of the zero-degree
(Celsius) isotherm (or
freezing level)

(layer isotherm-0)

land-depth Depth below land surface in
centimeters

(layer land-depth 5.0)

land-depth-between Layer between two depths in
ground (followed by the depth
of the top of the layer and the
depth of the bottom of the
layer centimeters)

(layer land-depth-between
0 30)
for layer from ground surface to 30
cm depth

land-height-cm Height level above ground
(high precision) (followed by
height in centimeters)

(layer land-height-cm 50)

land-isobar Pressure above ground level
in hPa

(layer land-isobar 500)

land-isobar-between Layer between two isobars
abive levels (followed by top
and bottom isobaric levels in
hPa)

(layer land-isobar-between
500 1000)

low-cld-base Level of low cloud bases (layer low-cld-base)
low-cld-top Level of low cloud tops (layer low-cld-top)
max-wind Level of maximum wind (layer max-wind)
mid-cld-base Level of middle cloud bases (layer mid-cld-base)
mid-cld-top Level of middle cloud tops (layer mid-cld-top)
msl Mean sea level (layer msl)
msl-height Height above mean sea level

(in meters)
(layer msl-height 50)

msl-height-between Layer between two heights
above mean sea level in
hundreds of meters (followed
by top and bottom height
values)

(layer msl-height-between
10 5)
for layer between 1000 and 500
meters above ground

msl-height-ft Height above mean sea level
(in feet)

(layer msl-height-ft 5000)

sea-bottom Bottom of the ocean (layer sea-bottom)
sea-depth Depth below the sea surface

(meters)
(layer sea-depth 50)

sigma Sigma level in 1/10000 (layer sigma 9950) for Sigma
level .995

sigma-between Layer between two sigma
surfaces (followed by top and
bottom sigma values
expressed in 1/100,
separated by a space)

(layer sigma-between 99.5
100.0)
for layer between .995 and 1.0

163

Table 1-15 Layer Parameter Codes (Cont.)

Layer Description Example
sigma-between-xp Layer between two sigma

levels (followed by top and
bottom sigma values
expressed as 1.1-sigma)

(layer sigma-between-xp
.105 .100)
for layer between .995 and 1.0

surface Earth's surface (layer surface)
theta Isentropic (theta) level

(followed by potential
temperature in degrees K)

(layer theta 300)

theta-between Layer between two isentropic
surfaces (followed by top and
bottom values expressed as
475-theta in degrees K)

(layer theta-between 150
200)

tropopause Level of tropopause (top of
troposphere)

(layer tropopause)

164

PowerPoint API Function Description Table

Method Description Example
Application Represents the entire Microsoft

PowerPoint application.

MyPath = Application.Path

ActivePresentation Returns a Presentation object
that represents the presentation
open in the active window.
(Read-only)

Application
.ActivePresentation.SaveAs MyPath

Presentations Returns a Presentation object
that represents the presentation
in which the specified document
window or slide show window
was created. (Read-only)

firstPresSlides = Windows(l).Presentation.Slides.Count
Windows(2).Presentation.PageSetup_

.FirstSlideNumber = firstPresSlides + 1

Presentations.Add Creates a presentation. Returns a
Presentation object that
represents the new presentation.

This example creates a presentation, adds a slide to it,
and then saves the presentation.
With Presentations.Add

.Slides.Add 1,
ppLayoutTitle

.SaveAs "Samp1e"
End With

Slides A collection of all the Slide
objects in the specified
presentation.

Use the Slides property to return a Slides collection:
ActivePresentation.Slides.Add 2,
ppLayoutBlank

Slides.Add Creates a new slide and adds it
to the collection of slides in the
specified presentation. Returns a
Slide object that represents the
new slide.

This example adds a blank slide at the end of the active
presentation.
With ActivePresentation.Slides

.Add .Count + 1,

ppLayoutBlank
End With

Shapes A collection of all the Shape
objects on the specified slide.
Each Shape object represents an
object in the drawing layer, such
as an AutoShape, freeform, OLE
object, or picture.

Use the Shapes property to return the Shapes collection.
The following example selects all the shapes on
myDocument.
Set myDocument =
ActivePresentation.Slides(1)
myDocument.Shapes.SelectAll

Shapes. AddPictu re Creates a picture from an
existing file. Returns a Shape
object that represents the new
picture.

Set myDocument =
ActivePresentation.Slides(1)
myDocument.Shapes.AddPicture
"c:\microsoft office\" &

"clipart\music.bmp", True, True,
100, 100, 70, 70

Shapes.PictureFormat Contains properties and methods
that apply to pictures and OLE
objects. The LinkFormat object
contains properties and methods
that apply to linked OLE objects
only. The OLEFormat object
contains properties and methods

Set myDocument =
ActivePresentation.Slides(1)
With
myDocument.Shapes(1).PictureFor
mat

165

that apply to OLE objects
whether or not they're linked.

.Brightness = 0.3

.Contrast =0.7

.ColorType =
msoPictureGrayScale

.CropBottom = 18
End With

PowerPoint API Function Description Table (Cont.)

Method Description Example
SlideShowTransition Contains information about how

the specified slide advances
during a slide show.

With
ActivePresentation.Slides(1).Si
ideShowTransition

.Speed =
ppTrans it ionSpeedFast
End With

SlideShowSetting Represents the slide show setup
for a presentation.

With
ActivePresentation.SlideShowSettings

.RangeType = ppShowSlideRange
End With

166

Application Application (n)

displays connects connects displays

pggjjlllp^

wrapper

notifies

Requests
Data

Provides
Data

Controller

T
notifies notifies

1
Glue component

T

wrapper n

polls
Directory
(storage)

^I^^^SßSSSS^^^aS^^^i^SSßflSSS^
I retrieves | |

W§m

Returns
data

commits stores

1
Database

Figure 3 - Wrapper & Glue Code Object Diagram

167

Viewer Controller Application
Directory

Glue
Component

PPT Wrapper

1: connects

tf

->r 2: polls for data

*Ü
3: notifies and

7: notifies when it's

r 8: notifies

forwards data
-> 4: connects 1o database

5: store is data

6: commits

done storing data
<-

that the data is in database

14: disp

->i

9: request data
^

Q

10: retri ä\ es data

11: retuinsdata
K
12: provides data
 >

ays brief

13 updates brief

<-

Database

^0

*D

Figure 5 - Continuous Brief Update Sequence Diagram

168

APPENDIX D. SOURCE CODE

169

1. Configuration GUI (CBcfg)

VERSION 5.00
Begin VB.Form CBform

BackColor &H80000004&
Caption "CBcfg"
ClientHeight 9195
ClientLeft 60
ClientTop 345
ClientWidth 8490
LinkTopic "Forml"
ScaleHeight 9195
ScaleWidth 8490
StartUpPosition 3 'Windows Default
Begin VB.TextBox VirtualDirText

Height 375
Left 1080
TabIndex 3
Tag _ ii 3 ii

Top 7320
Width 6375

End
Begin VB.TextBox TypeText

Height 375
Left 1080
TabIndex 1
Top 5160
Width 6375

End
Begin VB.CommandBütton Delete

Caption "Delete"
Enabled 0 'False
BeginProperty Font

Name "MS Sans Serif"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough = 0 'False

EndProperty
Height 375
Left 4440
Tablndex 6
Top 8160

170

Width
End
Begin VB.CommandButton

Caption
Enabled
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
Height
Left
TabIndex
Top
Width

End
Begin VB.CommandButton

Caption
BeginProperty Font

Name =
Size =
Charset =
Weight
Underline =
Italic =
Strikethrough

EndProperty
Height
Left
TabIndex
Top
Width

End
Begin VB.CommandButton

Caption =
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
Height = 375

1335

Add
"Set"
0 'False

"MS Sans Serif"
9.75
0
700
0 -False
0 'False
0 'False

375
6120
7
8160
1335

Cancel
"Cancel"

"MS Sans Serif"
9.75
0
700
0 'False
0 'False
0 -False

375
2760
5
8160
1335

OK
"OK"

"MS Sans Serif"
9.75
0
700
0 'False
0 'False
0 'False

171

Left = 1080
TabIndex = 4
Top = 8160
Width = 1335

End
Begin VB.TextBox LocationText

Height = 3 75
Left = 1080
Tablndex = 2
Tag = "3"
Top = 6240
Width = 6375

End
Begin VB.ListBox dataList

Height = 3570
Left = 1080
Tablndex = 0
Top = 720
Width = 6375

End
Begin VB.Label Label2

Caption = "Virtual directory (optional):"
BeginProperty Font

Name = "MS Sans Serif"
Size = 9.75
Charset = 0
Weight = 700
Underline = 0 -False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
Height = 255
Left = 1080
Tablndex = 11
ToolTipText = "A virtual directory associated

with the key used by the Web server."
Top = 6840
Width = 2775

End
Begin VB.Label Label4

Caption = "Key:"
BeginProperty Font

Name = "MS Sans Serif"
Size = 9-75
Charset = 0
Weight = 700
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

172

255
1080
10

4680
615

EndProperty
Height
Left
TabIndex
ToolTipText

variable name."
Top
Width

End
Begin VB.Label Label3

Caption =
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
Height
Left
Tablndex
ToolTipText

with the key."
Top
Width

End
Begin VB.Label Labell

Caption =
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
Height
Left
Tablndex
ToolTipText

Continuous Brief application. "
Top = 240
Width = 2295

End
End
Attribute VB Name = "CBform"

"An image type or any other

"Directory:"

"MS Sans Serif"
9.75
0
700
0
0
0

255
1080
9

"An

5760
1095

'False
■False
'False

actual directory associated

"Current configuration:"

"MS Sans Serif"
9.75
0
700
0
0
0

255
1080
8

'False
•False
'False

"The current setting for

173

Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

•#
'# File: CBform.frm
'# Date Author Histor
■# 5/31/2000 Tarn Tran Created.
'#
'# CBcfg is an utility application that provides a
'# Graphical User Interface (GUI) for setting the image
'# type and its location. This application supports the
'# configuration of CBWrapper.
'#
■##

i***

■

' String variables that hold the locations where to find
1 the configuation file (cbdata.cfg), and the temporary
' directory for this application during run time.
■

Private cfgfile As String
Private cfgtmp As String
i**

i

1 Unload the CBcfg form when the Cancel button is clicked,
i

Private Sub Cancel_Click()
Unload Me

End Sub
**

Display information for each record selected from the
current configuration list box.

**

Private Sub dataList_Click()
Dim listStr As String
Dim typeStr As String
Dim locationStr As String
Dim virtualStr As String

listStr = dataList.Text
Call linelnfo(listStr, typeStr, locationStr, virtualStr)
1 Display the key name in the Key text box.

174

TypeText.Text = typeStr
1 Display the directory associated with the key in the
1 Directory text box.
LocationText.Text = locationStr
1 Display the virtual directory associated with the key
' in the Virtual Directory text box
VirtualDirText.Text = virtualstr
Add.Enabled = False
Delete.Enabled = True

End Sub
**

Tasks done when deleting an item from the list.
First, copy all lines from the cfgfile to the cfgtmp
file except the line that's being deleted. Then copy
back to the cfgfile from the cfgtmp.

**

Private Sub Delete_Click()
Open cfgfile For Input As #1
Open cfgtmp For Output As #2
Do While Not E0F(1)

Line Input #1, inputStr
If Not (InStrd, inputStr, TypeText. Text & " = ",

vbTextCompare) > 0) Then
Print #2, inputStr

End If
Loop
Close #1
Close #2
' Copy the cfgtmp to the cfgfile
Open cfgtmp For Input As #1
Open cfgfile For. Output As #2
Do While Not EOF(l)

Line Input #1, inputStr
Print #2, inputStr

Loop
Close #1
Close #2
Call updateList

End Sub
**

Tasks done when the application is load.
This requires two system environment variables set,
which are CB_HOME, where the cbdata.cfg is located, and
CB_TMP, where the temporary file is created.

**

175

Private Sub Form_Load()
cfgfile = Environ("CB_HOME") & "\cbdata.cfg"
cfgtmp = Environ("TEMP") & "\cbdata_.tmp"
Call updateList

End Sub
**

Activate the Add button if new value is enterred from
the Image type box.

**

Private Sub KeyText_Change()
Add.Enabled = True

End Sub

**

Save the changes (if any), and close the CBcfg form
when the OK button is clicked

**

Private Sub OK_Click()
If (Add.Enabled) Then

Call Add_Click
End If
Unload Me

End Sub
**

The linelnfo subroutine parses a line input from the
configuration file (cbdata.cfg). It separates information
of the key, the directory, and the virtual directory
from the line string input.
Parameters:

in:
searchStr - the string is being parsed,

in/out:
K - a variable that holds the key string
D - a variable that holds the directory string
V - a variable that holds the virtual directory

string

**

Private Sub linelnfo (searchStr As String, K As String, D As
String, V As String)

istart = 1
istop = 0
istop = InStr(istart, searchStr, "=", vbTextCompare)
1 Get the key string

176

K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "|", vbTextCompare)
' Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V = ""

End If
End Sub
**

Tasks done when adding an item to the list. First, check
if there is any line from cfgfile that has the same key
value as the added item. Then update it with the new
value. Otherwise, add a new line (item) to the cfgfile.

**

Private Sub Add_Click()
Add.Enabled = False
Open cfgfile For Input As #1
Open cfgtmp For Output As #2
' Check for whether or not the image type exists.
Do While Not E0F(1)

Line Input #1, inputStr
If Not (InStrd, inputStr, TypeText. Text & " = ",

vbTextCompare) > 0) Then
1 Write to a temporary file
Print #2, inputStr

End If
Loop
If (StrCompC", VirtualDirText.Text, vbText Compare) = 0)

Then
Print #2, TypeText.Text & "=" & LocationText.Text

Else
Print #2, TypeText.Text & "=" & LocationText.Text &

"|" & VirtualDirText.Text
End If
Close #1
Close #2
' Copy the cfgtmp to the cfgfile
Open cfgtmp For Input As #1
Open cfgfile For Output As #2
Do While Not EOF(l)

Line Input #1, inputStr

177

Print #2, inputStr
Loop
Close #1
Close #2
Call updateList

End Slab
**

Activate the Add button if new value is enterred from
the Key text box.

Private Sub TypeText_Change()
Add.Enabled = True

End Sub
i**

!
1 Activate the Add button if new value is enterred from
1 the Directory text box.
i

i**

Private Sub locationText_Change()
Add.Enabled = True

End Sub
**

Refresh the GUI after adding or deleting an item from
the list.

**

Private Sub updateList ()
Dim intFile As Integer
dataList.Clear

intFile = FreeFileO
Open cfgfile For Input As #intFile
Do While Not EOF(intFile) ' Check for end of file.

Line Input #intFile, inputStr ' Read line of data.
dataList.Addltern inputStr

Loop
Close tintFile
TypeText.Text = ""
LocationText.Text = ""
VirtualDirText.Text = ""
Add.Enabled = False
Delete.Enabled = False

End Sub
i**

178

' Activate the Add button if new value is enterred from
1 the Virtual Directory text box.
i

i**

Private Sub VirtualDirText_Change()
Add.Enabled = True

End Sub

2. Application Wrapper (CBWrapper)

VERSION 5.0 0
Object = "{48E59290-9880-llCF-9754-OOAAOOC00908}#1.0#0" ;
"MSINET.OCX"
Begin VB.UserControl Webinterface

BackColor &H80000001&
ClientHeight 5475
ClientLeft 0
ClientTop 0
ClientWidth 8430
ScaleHeight 5475
ScaleWidth 8430
Begin InetCtlsObjects.Inet Inetl

Left 120
Top 120
_ExtentX 1005
_ExtentY 1005
_Version 393216

End
Begin VB.TextBox ImagesText

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough = 0 'False

EndProperty
Height 375
Left 5880
Tablndex 7
Text "24"
Top 1680
Width 735

End
Begin VB.TextBox HeightText

BeginProperty Font
Name "Arial"
Size 9.75

179

Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 5880
TabIndex = 6
Text = ii 540"

Top = 2520
Width = 735

End
Begin VB.TextBox WidthText

BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 •False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 375
Left = 5880
TabIndex = 5
Text = "720"
Top = 3360
Width = 735

End
Begin VB.TextBox DurationText

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 False
Italic 0 False
Strikethrough 0 False

EndProperty
Height = 375
Left = 5880
Tablndex = 4
Text = "0"
Top = 4200
Width = 735

End
Begin VB.CommandButton Start

Caption = "Start"

180

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 ■False
Strikethrough 0 'False

EndProperty
Height = 495
Left = 720
Tablndex = 3
Top = 2400
Width = 1215

End
Begin VB.CommandButton Default

Caption = "Default"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
Height = 495
Left = 720
Tablndex = 2
Top = 4080
Width = 1215

End
Begin VB.ComboBox ImageType

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 ■False
Strikethrough 0 False

EndProperty
Height = 360
Left = 720
Tablndex = 1
Text = "Select an image type"
Top = 1680
Width = 2895

End

181

Begin VB.CommandButton Stop
BackColor = &H00C0C0C0&
Caption = "Stop"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strike through 0 'False

EndProperty
Height = 495
Left = 720
MaskColor = &H80000004&
Tablndex = 0
Top = 3240
Width = 1215

End
Begin VB.Label images

BackColor = &H80000001&
Caption = "Images:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&
Height = 255
Left = 4800
Tablndex = 14
Top = 1680
Width = 855

End
Begin VB.Label Labe11

BackColor = &H80000001&
Caption = "Height:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

182

EndProperty
ForeColor = &H8000000E&
Height = 255
Left = 4800
TabIndex = 13
Top = 2520
Width = 735

End
Begin VB.Label Label2

' BackColor = &H80000001&
Caption = "Width:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
S t ri ke through 0 'False

EndProperty
ForeColor = &H8000000E&
Height = 255
Left = 4800
TabIndex = 12
Top = 3360
Width = 735

End
Begin VB.Label Labe13

BackColor = &H80000001&
Caption = "Duration:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&
Height = 255
Left = 4800
Tablndex = 11
Top = 4200
Width = 855

End
Begin VB.Label Label4

BackColor = &H80000001&
Caption = "Second(s)"

183

BeginProperty Font
Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&
Height = 255
Left = 6840
Tablndex = 10
Top = 4200
Width = 975

End
Begin VB.Label Labe15

Alignment = 2 'Center
BackColor = &H80000001&
Caption = "CONTINUOUS BRIEF"
BeginProperty Font

Name "MS Sans Serif"
Size 18
Charset 0
Weight 700
underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&
Height - 495
Left = 2280
Tablndex = 9
Top = 360
Width = 3975

End
Begin VB.Label type

BackColor = &H80000001&
Caption = "Image type:"
BeginProperty Font

Name "Arial"
Size 9.75
Charset 0
Weight 700
Underline 0 'False
Italic 0 'False
Strikethrough 0 'False

EndProperty
ForeColor = &H8000000E&

184

Height = 255
Left = 720
Tablndex = 8
Top = 1200
Width = 1215

End
End
Attribute VB_Name = "Webinterface"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
■##

'# File: Weblnterface.ctl
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit
I***

1 The Continuous Brief wrapper (CBWrapper) is an ActiveX
1 Control that represents the Graphical User Interface
1 (GUI) via the Web browser (Internet Explorer). It allows
1 an user to select the type of images that he/she wants
1 to view. Also, it allows the user to set the number of
1 images, the size, and the duration for the display,
i

**

Private mControllerConnector As ControllerConnector
Private mMonitor As Monitor
Private mMonitorConnector As MonitorConnector
Private WithEvents mController As Controller
Attribute mController.VB_VarHelpID = -1
1 Get reference to Application object from the PowerPoint
API.
Public myPPT As PowerPoint.Application
Public AppRunning As Boolean
Private BriefStarted As Boolean
Private downloadFolder As String
Private cfgFolder As String
Private ServerURL As String

Reset the Continuous Brief GUI to its default values.
Set slide show to fullscreen size.
Set number of images to 24
Set duration of the slide show to 0.

185

I**

Private Sub Default_Click()
ImageType.Text = "Select an image type"
ImagesText.Text = "24"
HeightText.Text = "540"
WidthText.Text = "720"
DurationText.Text = "0"

End Sub

**

Update the brief.
Use the GetlmageDir method from the Controller object
to get the location of the files.
Use the Controller_UpdateBrief method to update the brief.

**

Private Sub Start_Click()
Dim imageloc As String
BriefStarted = True
Call mController_UpdateBrief(ImageType.Text)

End Sub

**

Stop the slide show.
Terminate the background running PowerPoint application.
Free up the un-used object.
Reset the AppRunning flag to false.

**

Private Sub Stop_Click()
If AppRunning Then

myPPT.ActivePresentation.Close
myPPT.Quit
Set myPPT = Nothing
AppRunning = False
BriefStarted = False

End If
End Sub

i**

i

' Initialize references to the Monitor and Controller
objects.
i

i**

Private Sub UserControl Initialize()

186

Set mControllerConnector = New ControllerConnector
Set mController = mControllerConnector.Controller
Set mMonitorConnector = New MonitorConnector
Set mMonitor = mMonitorConnector.Monitor
AppRunning = False
BriefStarted = False

' Add image types to the drop-box in the Continuous
Brief GUI

Dim intFile As Integer ' FreeFile variable
Dim inputStr As String
Dim cfgFile As String
Dim typeStr As String
Dim locationStr As String
Dim virtualDirStr As String
Dim tmpFolderStr As String
Dim tmpFileStr As String
Dim downloadFileStr As String

' Set values for the URL, download folder, and a
temporary filename

• %%%%%%%%%%%%%%%%%%%%%%
1 Change config here:
ServerURL = "http://tampc.spawar.navy.mil/"
1 %%%%%%%%%%%%%%%%%%%%%%

cfgFile = "cbdata.cfg"
downloadFolder = Environ("TEMP") & "\cbdownload"
cfgFolder = downloadFolder & "\cbdata"
tmpFileStr = cfgFolder & "\" & cfgFile

' Download the "cbdata.cfg" file
downloadFileStr = ServerURL & "'/" & cfgFile

' Create a temporary directory for downloading data
Call createFolder(downloadFolder)
Call createFolder(cfgFolder)
Call downloadFile(downloadFileStr, tmpFileStr)

intFile = FreeFile()
Open tmpFileStr For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
Call linelnfo(inputStr, typeStr, locationStr,

virtualDirStr)
ImageType.Addltem typeStr

Loop
Close #intFile

End Sub

187

**

Receive Controller event to do the update for the brief.
Parameters:

in: DataType - the data (images) type
in: imageDir - the directory where to find the

images.

**

Private Sub mController_UpdateBrief(DataType As String)

1 Check for the right type of data that the CBWrapper is
showing.

If (StrCompdmageType.Text, DataType, vbTextCompare) =
0) And BriefStarted Then

Dim virtualDir As String
Dim fileListName As String
Dim tmpFileStr As String
Dim tmpURLStr As String
Call mController.GetImageInfo(ImageType.Text,

Image s Text.Text, _
virtualDir,

fileListName)
1 Local variables declarations
Dim myArrayO As String
Dim myPres As Presentation
Dim fs, f, fc, fl, i, j, K
Dim s As Slide
Dim Lef tVal As Long
Dim TopVal As Long
Dim imageW As Long
Dim imageH As Long
Dim ImgFile As String
Dim intFile As Integer
Dim inputStr As String

1 Download the list of image filenames from server
tmpURLStr = ServerURL & virtualDir & "/CB_listfile/"

& fileListName
tmpFileStr = cfgFolder & "\" & fileListName
Call downloadFile(tmpURLStr, tmpFileStr)

'. Download image files from server
intFile = FreeFileO
Open tmpFileStr For Input As #intFile
Do While Not EOF(intFile)

Line Input #intFile, inputStr
tmpURLStr = ServerURL & virtualDir & "/" &

inputStr

188

tmpFileStr = downloadFolder & "\" & inputStr
Call downloadFile(tmpURLStr, tmpFileStr)

Loop
Close iintFile

1 Get reference to the PowerPoint Application
object.

On Error Resume Next
Set myPPT = GetObject(, "PowerPoint.application")
If Err.Number <> 0 Then

Set myPPT
CreateObj ect("PowerPoint.application")

End If

1 Set the AppRunning flag so that it will be
' checked when the STOP button is clicked.
AppRunning = True

1 Stop the current running slide show (if any)
If myPPT.Presentations.Count <> 0 Then

myPPT.ActivePresentation.Close
End If

1 Create new presentation with the new update data
Set myPres = myPPT.Presentations.Add(True)

■ Create a FileSystemObject for manipulating the
file system

Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(downloadFolder)
Set fc = f.Files
i = 1
K = 1

' Store all filenames from the image directory
1 to an array for sorting purpose.
ReDim myArrayd To fc.Count)
For Each fl In fc

myArrayd) = fl.Name
i = i + 1

Next
1 Sort the array.
Call mMonitor.dhBubbleSort(myArray)

images.
' Calculate the positions and dimensions for the

Call GetDimensions(LeftVal, TopVal, imageW, imageH)

1 Add the images to the PowerPoint presentation.

189

For j = (fc.Count - ImagesText.Text + 1) To fc.Count
ImgFile = downloadFolder & "\" & myArray(j)
myPres.Slides.Add K, ppLayoutBlank
myPres.Slides.Item(K).Shapes.AddPicture

ImgFile, True, True, _

LeftVal, TopVal, imageW, imageH
K = K + 1

Next
'Free up the FileSystemObject when done
Set fs = Nothing
Set f = Nothing
Set fc = Nothing

show
' Configure the slide show properties and run the

For Each s In myPPT.ActivePresentation.Slides
With s.SlideShowTransition

.AdvanceOnTime = True

.AdvanceTime = DurationText.Text
End With

Next

With myPPT.ActivePresentation.SlideShowSettings
.StartingSlide = 1
.EndingSlide = ImagesText.Text
. AdvanceMode = ppSlideShowUseSlideTimings
.LoopUntilStopped = True
.Run

End With

' Delete the images when done creating the brief
For i = 1 To fc.Count

If fs.FileExists(downloadFolder & "\" & myArray(i))
Then

Set f = fs.DeleteFile(downloadFolder & "\" &
myArray(i), True)

End If
Next
End If

End Sub

The GetDimensions subroutine calculates the positions
(Left, Top), and the dimensions (Height, Width)
for the images.
Parameters:

in/out: L - the Left value

190

T - the Top value
W - the Width value
H - the Height value

**

Private Sub GetDimensions(L As Long, T As Long, W As Long, H
As Long)

' Local variables declarations
Dim DeltaX As Long
Dim DeltaY As Long

DeltaX = myPPT.ActivePresentation.PageSetup.SlideWidth -
WidthText.Text

DeltaY = myPPT.ActivePresentation.PageSetup.SlideHeight
- HeightText.Text

If DeltaX <= 0 Then
L = 0

Else
L = DeltaX / 2

End If
If DeltaY <= 0 Then

T = 0
Else

T = DeltaY / 2
End If
W = WidthText.Text
H = HeightText.Text
If W > 720 Then W = 720
If H > 540 Then H = 540

End Sub
**

The linelnfo subroutine parses a line input from the
configuration file (cbdata.cfg). It separates information
of the key, the directory, and the virtual directory
from the line string input.
Parameters:

in:
searchStr - the string is being parsed,

in/out:
K - a variable that holds the key string
D - a variable that holds the directory string
V - a variable that holds the virtual directory

string

**

Private Sub linelnfo(searchStr As String, K As String, D As
String, V As String)

191

Dim istart As Integer
Dim istop As Integer
istart = 1
istop = 0
istop = InStr(istart, searchStr, "=", vbTextCompare)
1 Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "|", vbTextCompare)
1 Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
'Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V = " "

End If
End Sub
**

The downloadFile subroutine uses the OpenURL method to
download a file from the current open connection using
HTTP protocol.
Parameters:

in:
URLStr - the URL for download the file from.
saveFile - the filename for storing the

downloaded file on the client machine.

**

Private Sub downloadFile(URLStr As String, saveFile As
String)

Dim bData() As Byte ' Data variable
Dim intFile As Integer ' FreeFile variable
intFile = FreeFile() ' Set intFile to an unused

file.

1 The result of the OpenURL method goes into the Byte
1 array, and the Byte array is then saved to disk.
bData() = Inet1.OpenURL(URLStr, icByteArray)
Open saveFile For Binary Access Write As #intFile
Put #intFile, , bData0
Close #intFile

End Sub
i**

i

' Creating a folder on client machine.

192

1 Parameter:
1 in: path - a qualify name of the folder being
created.
i

Private Sub createFolder(path As String)
Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObject")
If Not fs.FolderExists(path) Then

Set f = fs.createFolder(path)
End If
Set fs = Nothing
Set f = Nothing

End Slab
i**

i

1 Deleting a folder on a client machine.
1 Parameter:
' in: path - a qualify name of the folder being
deleted.

i**

Private Sub deleteFolder(path As String)
Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObject")
If fs.FolderExists(path) Then

fs.deleteFolder path, True
End If
Set fs = Nothing

End Sub
**

Clean up all temporary folder created when exiting.

**

Private Sub UserControl_Terminate()
1 Delete the download folder
deleteFolder downloadFolder

End sub

3. Object Components (Continuous Brief)

a) Global Variable Declarations

Attribute VB_Name = "GlobalDeclarations"

'# File: GlobalDeclarations.bas
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

193

Option Explicit
**

The cfglnfo type is a record that stores the information
that read from the cvdata.cfg file (i.e., Key, Directory,
Virtual Directory, and the stamped date, which is the last
time the data is checked.)

**

Public Type cfglnfo
key As String
path As String
virjpath As String
stampdate As Date

End Type

i**

i

'Global variables used by the ControllerConnector
i

i**

Public gController As Controller ' Reference to
controller object
Public gControllerUseCount As Long ■ Global reference count

**

Global variables used by the MonitorConnector

**

Public gMonitor As Monitor 'Reference to monitor
object
Public gMonitorUseCount As Long ' Global reference count

i**

i

' Global variables used by the Monitor and Controller
objects,
i

i**

Public gCfgArrayO As cfglnfo
b) Timer

VERSION 5.00
Begin VB.Form Timing

Caption = "Forml"

194

ClientHeight = 3195
ClientLeft 60
ClientTop = 345
ClientWidth = 4680
LinkTopic "Forml"
ScaleHeight = 3195
ScaleWidth 4680
StartUpPosition = 3 'Windows Default
Begin VB.Timer Clock

Left 2160
Top 1200

End
End
Attribute VB_Name = "Timing"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

File: Timing.frm
Date Author History
5/31/2000 Tarn Tran Created.

**

Set the clock interval to 5 second.
The Monitor component uses this timer event to poll the
storage directory for new data (images).

**

Private Sub Form_Load()
Clock.Interval = 5000

End Sub

c) Controller

VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "Controller"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

195

'# File: Controller.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit

The Controller component uses this UpdateBrief event to
notify the Continuous Brief wrapper (CBWrapper) for
updating the brief.
Event's parameters:

imageType: the type of images
imageLoc: the location where to find the images.

The Glue component will raise the event to notify the
Controller when it's done with storing data.

The Monitor component will raise the event to notify the
Controller when the new data come in.
WithEvents causes the component(s) which raise the

event(s)
to run asynchronously.
MonitorConnector component allows multiple connections to
single Monitor object.

**

Event UpdateBrief(imageType As String)

Public WithEvents mGlue As Glue
Attribute mGlue.VB_VarHelpID = -1
Private WithEvents mMonitor As Monitor ' Get Monitor events
Attribute mMonitor.VB_VarHelpID = -1
Private mMonitorConnector As MonitorConnector

**

Connect to the Monitor component

**

Private Sub Class_Initialize()

Set mMonitorConnector = New MonitorConnector
Set mMonitor = mMonitorConnector.Monitor

End Sub

196

**

Receive the notification from the Monitor component
The Controller passes the information to the Glue

component
for storing data to the database.
Event's paramenter:

DataType: the data (images) type

**

Private Sub mMonitor_NewData(DataType As String)
Set mGlue = New Glue
Call mGlue.StoreData(DataType)

End Sub

**

Receive the notification from the Glue component that
Asynchronous glue component is done.
The Controller notifies the CBWrapper(s) and passes the
information for the wrapper(s) to update the brief(s).
Event's paramenter:

DataType: the data (images) type

**

Private Sub mGlue_GlueDone(DataType As String)
Set mGlue = Nothing ' Free the Glue object

' Notify the CBWrapper for updating the brief
RaiseEvent UpdateBrief(DataType)

End Sub
**

Get all the image's filenames, which is being requested
from the CBWrapper, and make the makeFileList function
call to store the filenames to the CB_DATA.LST file.
Parameters:

in:
ImagelD - the image type
fileCounts - the number of images requested.
virtualDir - the virtural directory associated

with the images' directory,
in/out:

fileListName - a variable that holds the
filename,

which contains the list of images'
filenames.

**

197

Public Sub GetlmagelnfodmagelD As String, fileCounts As
Integer, _

virtualDir As String, fileListName
As String)

Dim i As Integer
For i = 1 To UBound(gCfgArray)

If (StrCompdmagelD, gCfgArray(i) .key,
vbTextCompare) = 0) Then

virtualDir = gCf gArray (i) .vir_path
fileListName = "CB_DATA.LST"
Call makeFileList(fileCounts, gCfgArray(i).path,

fileListName)
End If

' Next
End Sub
i**

i

1 Write all filenames from a specified directory to a file.
' This subroutine is called by Getlmagelnfo()
1 Parameters:
1 in:
1 fileCounts - number of files is being read.
1 path - a specified directory for getting the
filenames.
1 filename - the file used for storing the
filenames,
i

Private Sub makeFileList(fileCounts As Integer, path As
String, _

filename As String)
Dim fs, f, fc, fl, i, j, a
Dim myCount As Integer
Dim listfileStr As String
Dim myArrayO As String

1 Create a FileSystemObject for manipulating the file
system.

Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(path)
Set fc = f.Files
myCount = fc.Count
i = 1

' Store the name of the files to an array for sorting
purpose

ReDim myArrayd To myCount)
For Each fl In fc

198

myArray(i) = fl.Name
i = i + 1

Next

' Sort the array-
Call mMonitor.dhBubbleSort(myArray)
listfileStr = path & "\" & "CB_listfile"
createFolder listfileStr
Set a = fs.CreateTextFile(listfileStr & "\" & filename,

True)
For j = (myCount - fileCounts + 1) To myCount

a.WriteLine (myArray(j))
Next
a.Close
' Free up the objects, which are no longer be used.
Set fs = Nothing
Set f = Nothing
Set fc = Nothing
Set a = Nothing

End Sub
i**

i

' This createFolder is used for creating a specified folder.
' Parameter:
1 in: path - the qualified name of the folder being
created.
i

Private Sub createFolder(path As String)
Dim fs, f
Set fs = CreateObject("Scripting.FileSystemObject")
If Not fs.FolderExists(path) Then

Set f = fs.createFolder(path)
End If
Set fs = Nothing
Set f = Nothing

End Sub
d) Controller Connector

VERSION 1.0 CLASS
BEGIN

MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "ControllerConnector"
Attribute VB_GlobalNameSpace = False

199

Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True
■##

'# File: ControllerConnector.cls
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit

**

This property allows other components to get reference
to the Controller object.

**

Public Property Get Controller() As Controller
Set Controller = gController

End Property

**

Initilize Controller and reference count.

**

Private Sub Class_Initialize()
If gController Is Nothing Then

Set gController = New Controller
End If
gControllerUseCount = gControllerUseCount + 1

End Sub

**

Terminate controller when reference count = 0

**

Private Sub Class_Terminate()
gControllerUseCount = gControllerUseCount - 1
If gControllerUseCount = 0 Then

•Set gList = Nothing
Set gController = Nothing

End If
End Sub

e) Monitor

VERSION 1.0 CLASS
BEGIN

200

MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "Monitor"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

'# File: Monitor.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit
>**
1 The VISStamDate, IRStampDate, and VAPORStampDate variables
1 store the created date of the latest stored data.

1 WithEvents causes the component(s) which raise the
event(s)
1 to run asynchronously.
1 Event's parameter:
1 DataType: the data (images) type

1 The Monitor component will raise the event to notify the
' Controller when the new data come in.

Private VISStampDate As Date
Private IR'StampDate As Date
Private VAPORStampDate As Date

Private mTiming As Timing
Private WithEvents mClock As Timer
Attribute mClock.VB_VarHelpID = -1

Event NewData(DataType As String)
**

The tasks done when a new Monitor object is created.

**

Private Sub Class_Initialize()

' Start Monitor Timer and create instance of form
Set mTiming = New Timing
Load mTiming

201

1 Connect timers' events to associated event procedures
in Monitor

Set mClock = ttiTiming. Clock

' Get the config information from the configuration file
Call GetConfig

End Sub

i**

i

1 The tasks done when the Monitor object is terminated.

i**

Private Sub Class_Terminate() ' Terminate Monitor

1 Free up the timer object.
Set mClock = Nothing

1 Unload and free up the form.
Unload mTiming
Set mTiming = Nothing

End Sub

i**

1 Process Timer Event.
1 This timer event causes the Monitor to poll the storage
' directories for new data.
' The Monitor will raise the event (s) if it found a new
data.
■

i**

Private Sub mClock_Timer()
Dim i As Integer
For i = 1 To UBound(gCfgArray)

If IsNewFile(gCfgArray(i).path, i) Then
RaiseEvent NewData(gCfgArray(i).key)

End If
Next

End Sub

**

The IsNewFile function is used to determine whether or
not a new data exists.
Paramenters:

in: StrDir - the directory where to check for
new data.

202

in: StampDate - the created date of the latest
data from the previous checked.

Return:
TRUE if there's new data, and FALSE otherwise.

**

Private Function IsNewFile(StrDir As String, arraylndex As
Integer) As Boolean

1 Local variables declarations.
Dim fs, f, fc, fl, i
Dim myStamp As Date
Dim myArrayO As String

1 Create a FileSystemObject for manipulating the file
system.

Set fs = CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFolder(StrDir)
Set fc = f.Files
i = 1

' Store the name of the files to an array for sorting
purpose

ReDim myArrayd To fc.Count)
For Each fl In fc

myArrayd) = fl.Name
i = i + 1

Next

1 Sort the array
Call dhBubbleSort(myArray)

1 Check for new file based on the file's created date.
myStamp = fs.GetFile(StrDir & "\" &

myArray(fc.Count)).DateCreated
If (DateDiff("s", gCfgArray(arraylndex).stampdate,

myStamp) <> 0) Then
gCfgArray(arraylndex).stampdate = myStamp
IsNewFile = True

Else
IsNewFile = False

End If

1 Free up the objects, which are no longer be used.
Set fs = Nothing
Set f = Nothing
Set fc = Nothing

End Function

i**

203

1

I

1 Standard bubblesort.
1 DON'T USE THIS unless you know the data is already
almost sorted! It's incredibly slow for
randomly sorted data.

There are many variants on this algorithm.
There may even be better ones than this.
But it's not even going to win any

1 speed prizes for random sorts.

1 From "Visual Basic Language Developer's Handbook"
' by Ken Getz and Mike Gilbert
' Copyright 2000; Sybex, Inc. All rights reserved.

' In:
1 varItems:
' Array of items to be sorted.
• Out:
1 Varltems will be sorted.
i**

Public Sub dhBubbleSort(varltems As Variant)

Dim blnSorted As Boolean
Dim lngl As Long
Dim IngJ As Long
Dim lngltems As Long
Dim varTemp As Variant
Dim IngLBound As Long

lngltems = UBound(varltems)
IngLBound = LBound(varltems)

' Set lngl one lower than the lower bound,
lngl = IngLBound - 1
Do While (lngl < lngltems) And Not blnSorted

blnSorted = True
lngl = lngl + 1
For IngJ = IngLBound To lngltems - lngl

If varltems(IngJ) > varltems(IngJ + 1) Then
varTemp = varltems(IngJ)
varltems(IngJ) = varltems(IngJ + 1)
varltems(IngJ +1) = varTemp
blnSorted = False

End If
Next IngJ

Loop
End Sub
i**

204

The linelnfo subroutine parses a line input from the
configuration file (cbdata.cfg). It separates information
of the key, the directory, and the virtual directory
from the line string input.
Parameters:

in:
searchStr - the string is being parsed,

in/out:
K - a variable that holds the key string
D - a variable that holds the directory string
V - a variable that holds the virtual directory

string

**

Private Sub linelnfo(searchStr As String, K As String, D As
String, V As String)

Dim istart As Integer
Dim istop As Integer

istart = 1
istop = 0
istop = InStr(istart, searchStr, "=", vbTextCompare)
1 Get the key string
K = Mid(searchStr, istart, istop - 1)
istart = istop + 1
istop = InStr(istart, searchStr, "I", vbTextCompare)
1 Get the directory string
If istop > istart Then

D = Mid(searchStr, istart, istop - istart)
istart = istop + 1
•Get the location string
V = Mid(searchStr, istart)

Else
D = Mid(searchStr, istart)
V = ""

End If
End Sub

***irieirieicicit

The GetDateArraylndex function returns an index of the
dateArray, where the specified image type (ID) is stored.

*******************************icicicicicieicicieir1ci[iririr1ci!icieieicic1ciric

Public Function GetArrayIndex(key As String) As Integer
Dim tmplnfo As cfglnfo
Dim bFound As Boolean
Dim i As Integer
bFound = False
i = 1

205

Do While Not bFound
tmplnfo = gCfgArray(i)
If (StrComp(tmplnfo.key, key) = 0) Then

GetArrayIndex = i
bFound = True

End If
i = i + 1

Loop
End Function
i**

i

1 The GetConfig subroutine reads information stored in
1 the configuration file, and adds them to the link list,
i

i**

Private Sub GetConfig()

Dim cfgpath As String
Dim inputStr As String
Dim keyStr As String
Dim dirStr As String
Dim virDirStr As String
Dim intFile As Integer
Dim tmplnfo As cfglnfo

1 Initialize the size the gCfgArray
ReDim gCfgArray(0)
1 Get the path for the configuration file
cfgpath = Environ("CB_HOME") & "\cbdata.cfg"

1 Store the configured info to the array
intFile = FreeFileO
Open cfgpath For Input As #intFile
Do While Not EOF(intFile)

Line Input fintFile, inputStr
Call linelnfo(inputStr, keyStr, dirStr, virDirStr)
With tmplnfo

.key = keyStr

.path = dirStr

.vir_path = virDirStr

.stampdate = -1 ' initialize the date to
before Dec. 30, 1899

End With
ReDim Preserve gCfgArray(UBound(gCfgArray) + 1)
gCfgArray(UBound(gCfgArray)) = tmplnfo

Loop
Close #intFile

End Sub

206

f) Monitor Connector

VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "MonitorConnector"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

'# File: MonitorConnector.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created.
■##

Option Explicit
**

This property allows other components to get reference
to the Monitor object.

**

Public Property Get Monitor() As Monitor
Set Monitor = gMonitor

End Property
i**

■

r Initialize Monitor and reference count,
i

i**

Private Sub Class_Initialize ()
If gMonitor Is Nothing Then

' Creates a new link list for holding the
configuration info.

Set gMonitor = New Monitor
End If
gMonitorUseCount = gMonitorUseCount + 1

End Sub
**

Terminate Monitor when reference count = 0

**

207

Private Sub Class_Terminate()
gMonitorUseCount = gMonitorüseCount - 1
If gMonitorUseCount = 0 Then

Set gMonitor = Nothing
End If

End Sub
g) Glue

VERSION 1.0 CLASS
BEGIN
MultiUse = -1 'True
Persistable = 0 'NotPersistable
DataBindingBehavior = 0 'vbNone
DataSourceBehavior = 0 'vbNone
MTSTransactionMode = 0 'NotAnMTSObject

END
Attribute VB_Name = "Glue"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = True
Attribute VB_PredeclaredId = False
Attribute VB_Exposed = True

■# File: Glue.els
'# Date Author History
'# 5/31/2000 Tarn Tran Created.

Option Explicit
**

The Glue component uses this event to notify the
Controller when done with its task.
Event's parameter: ■

DataType: the data (images) type.

**

Event GlueDone(DataType As String)

**

Notify the Controller when done storing data.

**

Public Sub StoreData(DataType As String) ' Start glue task
' <Insert glue task here>

RaiseEvent GlueDone(DataType)
End Sub

208

LIST OF REFERENCES

[1] United States, General Services Administration, Federal
Acquisition Regulation.

[2] DoD Directive 5000.1, "Defense Acquisition," March 15,
1996.

[3] Tracz, W., "Architectural Issues, other Lessons Learned
in Component-Based Software Development," Crosstalk,
pp. 4-7,January 2000.

[4] Brooks, F., The Mythical Man-month, Addison-Wesley,
1995.

[5] Military Standard, "Software Development and
Documentation Standard," MIL-STD-498, December 5, 1994.

[6] Hensley, B., "Development of A Software Evolution
Process for Military Systems Composed of Integrated
Commercial Off The Shelf (COTS) Components," Thesis,
Naval Postgraduate School, March 2000.

[7] Davis, A., and Leffingwell, D., "Using Requirements
Management to Speed Delivery of Higher Quality
Applications", Rational Software Corporation, 1995.

[8] Dorfman, M., and Thayer, R., Standards, Guidelines and
Examples of System and Software Requirements
Engineering, Los Alamitos, CA, IEEE Computer Society,
1991. y

[9] Phillips, D., The Software Project Manager's Handbook,
p. 198, IEEE Computer Society, 1998.

[10] Youngblut, Christine and Bill Brykczynski, "An
Examination of Selected Software Testing Tools: 1992,"
Institute for Defense Analyses, IDA Paper P-2769,
December 1992.

[ll]Hetzel, B., The Complete Guide to Software Testing, QED
Information Sciences, Inc., Wellesley, Mass., 1988.

[12] Boehm, B.W. and P.N. Papaccio, "Understanding and
Controlling Software Costs," IEEE Transactions on

209

Software Engineering, Vol. 12, No. 9, pp. 929-940,
October 1988.

[13]Boehm, B., Software Risk Management, p.3, IEEE Computer
Society Press, July 1989.

[14]Fox, G., Lantner, K., Marcom, S., "A Software
Development Process for COTS-Based Information System
Infrastructure: Part 1", 1997.

[15JDISA, "Department of Defense (DoD) Technical
Architecture Framework for Information Management
(TAFIM)," Version 3.0, September 1996.

[16]"Wßlcome to TOGAF - The Open Group Architectural
Framework," http://www.opengroup.org/public/arch.

[17]"The Open Group Portal To The World of DCE,"
http://www.opengroup.org/DCE.

[18JDISA, DU COE Integration & Runtime Specifications,
Version 3.1, October 1, 1998.

[19]Garlan, D., and Perry, D., "Introduction to the Special
Issue on Software Architecture," IEEE Transactions on
Software Engineering, Vol. 21, No.4, pp. 269-274, April
1995.

[20]Luqi and Berzins, V., "Software Architectures in
Computer-Aided Prototyping," Proc. 1995 Monterey
Workshop, September 1995.

[21]Waugh, D., "Prospectus on Software Architecture,"
Software Engineering Institute, September 5, 1995.

[22]DoD Regulation 5000.2-R, "Mandatory Procedures for Major
Defense Acquisition Programs (MDAP) and Major Automated
Information System (MAIS) Acquisition Programs," March
1996.

[23]Wallnau, K. and Foreman, J., "Object Request Broker,"
Software Engineering Institute, June 25, 1997.

[24]Microsoft Corporation, "DCOM Technical Overview,"
November 1996.

[25]"Extensible Markup Language (XML)," www.w3.org/XML/.

210

[26]Allen, J., and Tran, T., "Interoperability and Security
Suppport for Heterogeneous COTS/GOTS/Legacy Components-
Based Architecture," Thesis, Naval Postgraduate School,
June 2000.

[27]Nguyen, T., "Commercial Off-The-Shelf (COTS), Legacy
Systems Integration Architecture Design and Analysis,"
Thesis, Naval Postgraduate School, June 2000.

211

THIS PAGE LEFT INTENTIONALLY BLANK

212

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2 . Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

3 . Chairman, Code CS 1
Naval Postgraduate School
Monterey, California 93943-5100

4 . Dr. Luqi, CS/Lq , 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

5. Dr. Mantak Shing, Code CS/Sh 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

6. Karen M. Gee 1
12560 Salmon River Rd.
San Diego, California 92129

213

